Models for prediction of physiological responses of Holstein dairy cows

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorHernández-Julio, Yamid Fabián-
Autor(es): dc.creatorYanagi Júnior, Tadayuki-
Autor(es): dc.creatorPires, Maria de Fátima Ávila-
Autor(es): dc.creatorLopes, Marcos Aurélio-
Autor(es): dc.creatorLima, Renato Ribeiro de-
Data de aceite: dc.date.accessioned2026-02-09T11:22:17Z-
Data de disponibilização: dc.date.available2026-02-09T11:22:17Z-
Data de envio: dc.date.issued2020-09-30-
Data de envio: dc.date.issued2020-09-30-
Data de envio: dc.date.issued2014-10-07-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/43259-
Fonte completa do material: dc.identifierhttps://www.tandfonline.com/doi/full/10.1080/08839514.2014.952919-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1139470-
Descrição: dc.descriptionThe goal of the present study was to evaluate techniques for modeling the physiological responses, rectal temperature, and respiratory rate of black and white Holstein dairy cows. Data from the literature (792 data points) and obtained experimentally (5884 data points) were used to fit and validate the models. Each datum included dry bulb air temperature, relative humidity, rectal temperature, and respiratory rate. Two models based on artificial intelligence-artificial neural networks and neurofuzzy networks-and one based on regression were evaluated for each response variable. The adjusted models predict rectal temperature and respiratory rate as a function of dry-bulb air temperature and relative humidity. These models were compared using statistical indices. The model based on artificial neural networks showed the best performance, followed by the models based on neurofuzzy networks and regression; the last two performed similarly.-
Idioma: dc.languageen-
Publicador: dc.publisherTaylor & Francis-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceApplied Artificial Intelligence-
Palavras-chave: dc.subjectArtificial neural networks-
Palavras-chave: dc.subjectNeurofuzzy networks-
Palavras-chave: dc.subjectRegression methods-
Palavras-chave: dc.subjectHolstein dairy cows-
Título: dc.titleModels for prediction of physiological responses of Holstein dairy cows-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.