
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.creator | Okey, Ogobuchi Daniel | - |
| Autor(es): dc.creator | Maidin, Siti Sarah | - |
| Autor(es): dc.creator | Adasme, Pablo | - |
| Autor(es): dc.creator | Rosa, Renata Lopes | - |
| Autor(es): dc.creator | Saadi, Muhammad | - |
| Autor(es): dc.creator | Carrillo Melgarejo, Dick | - |
| Autor(es): dc.creator | Zegarra Rodríguez, Demóstenes | - |
| Data de aceite: dc.date.accessioned | 2026-02-09T11:17:17Z | - |
| Data de disponibilização: dc.date.available | 2026-02-09T11:17:17Z | - |
| Data de envio: dc.date.issued | 2023-05-25 | - |
| Data de envio: dc.date.issued | 2023-05-25 | - |
| Data de envio: dc.date.issued | 2022-09 | - |
| Fonte completa do material: dc.identifier | https://repositorio.ufla.br/handle/1/56855 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1137644 | - |
| Descrição: dc.description | Following the recent advances in wireless communication leading to increased Internet of Things (IoT) systems, many security threats are currently ravaging IoT systems, causing harm to information. Considering the vast application areas of IoT systems, ensuring that cyberattacks are holistically detected to avoid harm is paramount. Machine learning (ML) algorithms have demonstrated high capacity in helping to mitigate attacks on IoT devices and other edge systems with reasonable accuracy. However, the dynamics of operation of intruders in IoT networks require more improved IDS models capable of detecting multiple attacks with a higher detection rate and lower computational resource requirement, which is one of the challenges of IoT systems. Many ensemble methods have been used with different ML classifiers, including decision trees and random forests, to propose IDS models for IoT environments. The boosting method is one of the approaches used to design an ensemble classifier. This paper proposes an efficient method for detecting cyberattacks and network intrusions based on boosted ML classifiers. Our proposed model is named BoostedEnML. First, we train six different ML classifiers (DT, RF, ET, LGBM, AD, and XGB) and obtain an ensemble using the stacking method and another with a majority voting approach. Two different datasets containing high-profile attacks, including distributed denial of service (DDoS), denial of service (DoS), botnets, infiltration, web attacks, heartbleed, portscan, and botnets, were used to train, evaluate, and test the IDS model. To ensure that we obtained a holistic and efficient model, we performed data balancing with synthetic minority oversampling technique (SMOTE) and adaptive synthetic (ADASYN) techniques; after that, we used stratified K-fold to split the data into training, validation, and testing sets. Based on the best two models, we construct our proposed BoostedEnsML model using LightGBM and XGBoost, as the combination of the two classifiers gives a lightweight yet efficient model, which is part of the target of this research. Experimental results show that BoostedEnsML outperformed existing ensemble models in terms of accuracy, precision, recall, F-score, and area under the curve (AUC), reaching 100% in each case on the selected datasets for multiclass classification. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | en | - |
| Publicador: dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | - |
| Direitos: dc.rights | Attribution 4.0 International | - |
| Direitos: dc.rights | Attribution 4.0 International | - |
| Direitos: dc.rights | acesso aberto | - |
| Direitos: dc.rights | http://creativecommons.org/licenses/by/4.0/ | - |
| Direitos: dc.rights | http://creativecommons.org/licenses/by/4.0/ | - |
| ???dc.source???: dc.source | Sensors | - |
| Palavras-chave: dc.subject | Internet of Things | - |
| Palavras-chave: dc.subject | Ensemble algorithms | - |
| Palavras-chave: dc.subject | Cyberattacks | - |
| Palavras-chave: dc.subject | Machine learning IDS | - |
| Palavras-chave: dc.subject | Data imbalance | - |
| Palavras-chave: dc.subject | Synthetic minority oversampling technique (SMOTE) | - |
| Palavras-chave: dc.subject | Internet das Coisas | - |
| Palavras-chave: dc.subject | Algoritmo de Ensemble | - |
| Palavras-chave: dc.subject | Ataques cibernéticos | - |
| Palavras-chave: dc.subject | Sistema de detecção de intrusão (IDS) | - |
| Palavras-chave: dc.subject | Aprendizagem de máquina | - |
| Palavras-chave: dc.subject | Dados desbalanceados | - |
| Palavras-chave: dc.subject | Técnica de Sobreamostragem Sintética de Minoria | - |
| Título: dc.title | BoostedEnML: Efficient Technique for Detecting Cyberattacks in IoT Systems Using Boosted Ensemble Machine Learning | - |
| Tipo de arquivo: dc.type | Artigo | - |
| Aparece nas coleções: | Repositório Institucional da Universidade Federal de Lavras (RIUFLA) | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: