Group algebras whose units satisfy a laurent polynomial identity

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBroche, Osnel-
Autor(es): dc.creatorGonçalves, Jairo Z.-
Autor(es): dc.creatorDel Río, Ángel-
Data de aceite: dc.date.accessioned2026-02-09T11:17:11Z-
Data de disponibilização: dc.date.available2026-02-09T11:17:11Z-
Data de envio: dc.date.issued2019-06-04-
Data de envio: dc.date.issued2019-06-04-
Data de envio: dc.date.issued2018-10-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/34598-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s00013-018-1223-8-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1137609-
Descrição: dc.descriptionLet KG be the group algebra of a torsion group G over a field K. We show that if the units of KG satisfy a Laurent polynomial identity, which is not satisfied by the units of the relative free algebra K[α,β:α2=β2=0] , then KG satisfies a polynomial identity. This extends Hartley’s Conjecture which states that if the units of KG satisfy a group identity, then KG satisfies a polynomial identity. As an application we prove that if the units of KG satisfy a Laurent polynomial identity whose support has cardinality at most 3, then KG satisfies a polynomial identity.-
Idioma: dc.languageen-
Publicador: dc.publisherSpringer-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceArchiv der Mathematik-
Palavras-chave: dc.subjectGroup rings-
Palavras-chave: dc.subjectPolynomial identities-
Palavras-chave: dc.subjectLaurent identities-
Título: dc.titleGroup algebras whose units satisfy a laurent polynomial identity-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.