Proximal sensor-enhanced soil mapping in complex soil-landscape areas of Brazil

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorSilva, Sérgio H. G.-
Autor(es): dc.creatorWeindorf, David C.-
Autor(es): dc.creatorFaria, Wilson M.-
Autor(es): dc.creatorPinto, Leandro C.-
Autor(es): dc.creatorMenezes, Michele D.-
Autor(es): dc.creatorGuilherme, Luiz R. G.-
Autor(es): dc.creatorCuri, Nilton-
Data de aceite: dc.date.accessioned2026-02-09T11:16:11Z-
Data de disponibilização: dc.date.available2026-02-09T11:16:11Z-
Data de envio: dc.date.issued2022-02-09-
Data de envio: dc.date.issued2022-02-09-
Data de envio: dc.date.issued2021-08-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/49250-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/S1002-0160(21)60007-3-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1137253-
Descrição: dc.descriptionPortable X-ray fluorescence (pXRF) spectrometry and magnetic susceptibility (MS) via magnetometer have been increasingly used with terrain variables for digital soil mapping. However, this methodology is still emerging in many countries with tropical soils. The objective of this study was to use proximal soil sensor data associated with terrain variables at varying spatial resolutions to predict soil classes using the Random Forest (RF) algorithm. The study was conducted on a 316-ha area featuring highly variable soil classes and complex soil-landscape relationships in Minas Gerais State, Brazil. The overall accuracy and Kappa index were evaluated using soils that were classified at 118 sites, with 90 being used for modeling and 28 for validation. Digital elevation models (DEMs) were created at 5-, 10-, 20-, and 30-m resolutions using contour lines from two sources. The resulting DEMs were processed to generate 12 terrain variables. Total Fe, Ti, and SiO2 contents were obtained using pXRF, with MS determined via a magnetometer. Soil class prediction was performed using the RF algorithm. The quality of the soil maps improved when using only the five most important covariates and combining proximal sensor data with terrain variables at different spatial resolutions. The finest spatial resolution did not always provide the most accurate maps. The high soil complexity in the area prevented highly accurate predictions. The most important variables influencing the soil mapping were MS, Fe, and Ti. Proximal sensor data associated with terrain information were successfully used to map Brazilian soils at variable spatial resolutions.-
Idioma: dc.languageen-
Publicador: dc.publisherElsevier-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourcePedosphere-
Palavras-chave: dc.subjectMagnetic susceptibility-
Palavras-chave: dc.subjectMagnetometer-
Palavras-chave: dc.subjectSoil class-
Palavras-chave: dc.subjectSoil spatial analysis-
Palavras-chave: dc.subjectSpatial resolution-
Palavras-chave: dc.subjectTerrain variables-
Palavras-chave: dc.subjectSuscetibilidade magnética-
Palavras-chave: dc.subjectMagnetômetro-
Palavras-chave: dc.subjectClasse do solo-
Palavras-chave: dc.subjectAnálise espacial do solo-
Palavras-chave: dc.subjectResolução espacial-
Palavras-chave: dc.subjectVariáveis do terreno-
Título: dc.titleProximal sensor-enhanced soil mapping in complex soil-landscape areas of Brazil-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.