Multivariate geostatistical application for climate characterization of Minas Gerais State, Brazil

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorCarvalho, Luiz G. de-
Autor(es): dc.creatorAlves, Marcelo de Carvalho-
Autor(es): dc.creatorOliveira, Marcelo S. de-
Autor(es): dc.creatorVianello, Rubens L.-
Autor(es): dc.creatorSediyama, Gilberto C.-
Autor(es): dc.creatorCarvalho, Luis Marcelo Tavares de-
Data de aceite: dc.date.accessioned2026-02-09T11:09:56Z-
Data de disponibilização: dc.date.available2026-02-09T11:09:56Z-
Data de envio: dc.date.issued2013-08-06-
Data de envio: dc.date.issued2013-08-06-
Data de envio: dc.date.issued2010-
Fonte completa do material: dc.identifierhttp://link.springer.com/article/10.1007%2Fs00704-010-0273-z-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/869-
Fonte completa do material: dc.identifierhttp://link.springer.com/article/10.1007%2Fs00704-010-0273-z-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1135127-
Descrição: dc.descriptionThe objective of the present study was to assess for Minas Gerais the cokriging methodology, in order to characterize the spatial variability of Thornthwaite annual moisture index, annual rainfall, and average annual air temperature, based on geographical coordinates, altitude, latitude, and longitude. The climatic element data referred to 39 INMET climatic stations located in the state of Minas Gerais and in nearby areas and the covariables altitude, latitude, and longitude to the SRTM digital elevation model. Spatial dependence of data was observed through spherical cross semivariograms and cross covariance models. Box–Cox and log transformation were applied to the positive variables. In these situations, kriged predictions were back-transformed and returned to the same scale as the original data. Trend was removed using global polynomial interpolation. Universal simple cokriging best characterized the climate variables without tendentiousness and with high accuracy and precision when compared to simple cokriging. Considering the satisfactory implementation of universal simple cokriging for the monitoring of climatic elements, this methodology presents enormous potential for the characterization of climate change impact in Minas Gerais state.-
Idioma: dc.languageen-
Publicador: dc.publisherSpringer-
Direitos: dc.rightsacesso aberto-
???dc.source???: dc.sourceTheor Appl Climatol-
Palavras-chave: dc.subjectRemote Sensing,-
Palavras-chave: dc.subjectNulti sensing-
Título: dc.titleMultivariate geostatistical application for climate characterization of Minas Gerais State, Brazil-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.