Um estudo de condições de Karush-Kuhn-Tucker para problemas de otimização não linear com restrições

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorDelfino, Adriano Rodrigo-
Autor(es): dc.contributorDelfino, Adriano Rodrigo-
Autor(es): dc.contributorSouto, Gilberto-
Autor(es): dc.contributorMartins, Vanderlei-
Autor(es): dc.creatorSchmoller, Gabriela Fernanda-
Data de aceite: dc.date.accessioned2025-08-29T13:36:17Z-
Data de disponibilização: dc.date.available2025-08-29T13:36:17Z-
Data de envio: dc.date.issued2024-09-18-
Data de envio: dc.date.issued2024-09-18-
Data de envio: dc.date.issued2024-06-21-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/34837-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1116134-
Descrição: dc.descriptionThis work presents a study on the Karush-Kuhn-Tucker (KKT) conditions applied to nonlinear optimization problems with constraints. Throughout the paper, fundamental concepts of Linear Algebra, Topology, Multivariable Calculus, and Convexity are addressed, providing a theoretical foundation for the analysis of the KKT conditions. The principles of optimization are discussed, and the Karush-Kuhn-Tucker system is detailed. Furthermore, the paper explores the Newton Method, generalized for the KKT system, and the Sequential Quadratic Programming (SQP) Method, which solves optimization problems iteratively by approximating the objective function with a quadratic function. To demonstrate the practical application of the KKT conditions, detailed examples are presented, showing the validity of these conditions for obtaining solutions to optimization problems.-
Descrição: dc.descriptionEste trabalho apresenta um estudo sobre as condições de Karush-Kuhn-Tucker (KKT) aplicadas a problemas de otimização não linear com restrições. Ao longo do trabalho, são abordados conceitos fundamentais de Álgebra Linear, Topologia, Cálculo em Várias Variáveis e Convexidade, que servem de base teórica para a análise das condições de KKT. São discutidos os princípios da otimização e detalhado o sistema de Karush-Kuhn-Tucker. Além disso, o trabalho explora o Método de Newton, generalizado para o sistema de KKT, e o Método de Programação Quadrática Sequencial (SQP), que resolve problemas de otimização de forma iterativa, através da aproximação da função objetivo por uma função quadrática. Para demonstrar a aplicação prática das condições de KKT, são apresentados exemplos detalhados, demonstrando a validade dessas condições para a obtenção de soluções de problemas de otimização.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherPato Branco-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherDepartamento Acadêmico de Matemática-
Publicador: dc.publisherLicenciatura em Matemática-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Direitos: dc.rightshttp://creativecommons.org/licenses/by/4.0/-
Palavras-chave: dc.subjectOtimização matemática-
Palavras-chave: dc.subjectProgramação não-linear-
Palavras-chave: dc.subjectProgramação (Matemática)-
Palavras-chave: dc.subjectMathematical optimization-
Palavras-chave: dc.subjectNonlinear programming-
Palavras-chave: dc.subjectProgramming (Mathematics)-
Palavras-chave: dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA-
Título: dc.titleUm estudo de condições de Karush-Kuhn-Tucker para problemas de otimização não linear com restrições-
Título: dc.titleA study of Karush-Kuhn-Tucker conditions for nonlinear optimization problems with constraints-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.