Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Machado, Guilherme Duenhas | - |
Autor(es): dc.contributor | Machado, Guilherme Duenhas | - |
Autor(es): dc.contributor | Cordeiro, Patrícia Hissae Yassue | - |
Autor(es): dc.contributor | Fontella, Marcio | - |
Autor(es): dc.creator | Araújo, João Vítor Ortiz | - |
Data de aceite: dc.date.accessioned | 2025-08-29T13:01:32Z | - |
Data de disponibilização: dc.date.available | 2025-08-29T13:01:32Z | - |
Data de envio: dc.date.issued | 2024-09-26 | - |
Data de envio: dc.date.issued | 2034-09-06 | - |
Data de envio: dc.date.issued | 2024-09-26 | - |
Data de envio: dc.date.issued | 2024-09-05 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/34901 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1106092 | - |
Descrição: dc.description | The production of recycled paper and the paper packaging market have seen significant growth in recent years due to economic and environmental advantages. Understanding the physical properties of paper is of great interest to the industry, as they are crucial in conversion processes and product quality. Along with the increase in automation and the interest in improving factory process control, there has also been an increase in the amount of available process data. This study aims to use multivariate analyses and machine learning models to understand the behavior of physical paper properties, such as delamination and compression resistance, based on certain process variables. Multivariate Linear Regression, Decision Tree, and Artificial Neural Networks models were implemented using Python algorithms, allowing for model fitting to the training dataset and for checking dispersion, associated error, partial dependence, and the influence of process variables on the physical resistance results of the validation set. The results for the Neural Networks model for delamination and compression resistance showed R² = 77% and R² = 73%, respectively, with partial dependence behavior very similar to that described in other bibliographic. | - |
Descrição: dc.description | A produção de papel reciclado e o mercado embalagens de papel apresentou grande crescimento nos últimos anos devido à vantagens econômicas e ambientais. O entendimento das propriedades físicas do papel é de grande interesse para a indústria, visto que são determinantes nos processos de conversão e na qualidade dos produtos. O aumento da automação e do interesse em melhorar o controle dos processos fabris estão associados à capacidade de gerar bancos de dados cada vez maiores. O presente trabalho teve como objetivo utilizar análises multivariáveis e modelos de aprendizado de máquina para entender o comportamento das propriedades físicas do papel, como a resistência à delaminação e à compressão, de acordo com algumas variáveis de processo. Os modelos de Regressão Linear Multivariada, Árvore de Decisão e Redes Neurais Artificiais foram implementados em algoritmos utilizando a linguagem Python, sendo possível ajustar os modelos ao conjunto de dados treinamento e verificar a dispersão, o erro associado, a dependência parcial e a influência das variáveis de processo nos resultados de resistência física do conjunto de validação. Os resultados do modelo de Redes Neurais para a resistência a delaminação e à compressão foram de R² = 77% e R² = 73% respectivamente, com um comportamento de dependência parcial muito semelhante ao descrito por outras referência bibliográficas. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Londrina | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Engenharia Química | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | embargoedAccess | - |
Direitos: dc.rights | http://creativecommons.org/licenses/by/4.0/ | - |
Palavras-chave: dc.subject | Resíduos de papel - Reaproveitamento | - |
Palavras-chave: dc.subject | Aprendizado do computador | - |
Palavras-chave: dc.subject | Redes neurais (Computação) | - |
Palavras-chave: dc.subject | Waste paper - Recycling | - |
Palavras-chave: dc.subject | Machine learning | - |
Palavras-chave: dc.subject | Neural networks (Computer science) | - |
Palavras-chave: dc.subject | CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA | - |
Título: dc.title | Redes neurais aplicadas à determinação de testes de resistência física em papel reciclado | - |
Título: dc.title | Neural networks applied to determining physical resistance tests on recycled paper | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: