Análise, classificação e detecção automática de nódulos em raízes de cultivares de soja

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorLopes, Fabricio Martins-
Autor(es): dc.contributorhttps://orcid.org/0000-0002-8786-3313-
Autor(es): dc.contributorhttp://lattes.cnpq.br/1660070580824436-
Autor(es): dc.contributorSaito, Priscila Tiemi Maeda-
Autor(es): dc.contributorhttp://lattes.cnpq.br/6652293216938994-
Autor(es): dc.contributorOliveira, Claiton de-
Autor(es): dc.contributorhttp://lattes.cnpq.br/8851289265109891-
Autor(es): dc.contributorLopes, Fabricio Martins-
Autor(es): dc.contributorhttp://lattes.cnpq.br/1660070580824436-
Autor(es): dc.contributorBugatti, Pedro Henrique-
Autor(es): dc.contributorhttp://lattes.cnpq.br/2177467029991118-
Autor(es): dc.contributorSaito, Priscila Tiemi Maeda-
Autor(es): dc.contributorhttp://lattes.cnpq.br/6652293216938994-
Autor(es): dc.creatorPacanhela, Eber Fabiano-
Data de aceite: dc.date.accessioned2025-08-29T13:00:55Z-
Data de disponibilização: dc.date.available2025-08-29T13:00:55Z-
Data de envio: dc.date.issued2023-10-05-
Data de envio: dc.date.issued2023-10-05-
Data de envio: dc.date.issued2023-08-09-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/32622-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1105930-
Descrição: dc.descriptionSoybean is the most cultivated oilseed in the world, with many varieties, high economic valeu, and higth protein content. Soybean production requires large amounts of nitrogen for the plant’s nutrition. This nutrient can be supplied through chemical fertilizers, which harm the environment. However, the biological nitrogen fixation (BNF) process has effectively increased productivity and minimized environmental impacts. BNFoccurs through the symbiotic association of diazotrophic bacteria in the system of legumes and oilseeds, where root nodules are formed. It is Known that technological advancements have driven the adoption of digital technologies inagriculture to improve efficiency and productivity, reduce environmental impacts, and promote hamn health. Due to its economic importance, soybean cultivation canbenfit from these technologies. This study proposes developing a computational intelligence methodology based on image processing and computer vision to analyze, classify, and automatically detect the root nodules resulting from BNF in soybean crops. In which, a future study, the effectiveness of nidulation can be evaluated, conseidering the quantity of nodules. For this purpose, classical models and convolutional neural networks are adopted for the classification task and computer vision models for nodule detection. The resuls show that traditional models and convolutional neural networks are promising for the classification task. In the detection task, convolutional neural networks demonstrated improved performance. However, there is still room for improvement to enhance nodule detection accurary in soybean cultivar roots.-
Descrição: dc.descriptionA soja é a oleaginosa mais cultivada no mundo, possui grande número de variedades, alto valor econômico e elevado teor proteico. A produção de soja requer grandes quantidades de nitrogênio para a nutrição da planta. O nutriente pode ser fornecido por fertilizantes químicos, prejudicais ao meio ambiente. No entanto, o processo de fixação biológica do nitrogênio (FBN) tem sido uma opção eficaz para aumentar a produtividade e minimizar os impactos ambientais. A FBN ocorre por meio da associação simbiótica de bactérias diazotróficas no sistema radicular de leguminosas e oleaginosas, onde nódulos radiculares são formados. Sabe-se que o avanço tecnológico tem impulsionado a adoção de tecnologias digitais na agricultura visando melhorar a eficiência e a produtividade do cultivo, reduzir impactos ambientais e promover a saúde humana. A sojicultura, devido à sua importancia econômica, também pode ser beneficiada por essas tecnologias. Nesse contexto, este trabalho propõe o desenvolvimento de uma metodologia de inteligência computacional baseada em processamento de imagens e visão computacional para analisar, classificar e detectar automaticamente os nódulos radiculares resultantes da FBN na cultura da soja. No qual, em um estudo futuro a eficácia da nodulação em soja poderá ser avaliada, levando em consideração a quantidade de nódulos. Para isso, são adotados modelos clássicos e redes convolucionais para a tarefa de classificação, bem como modelos de visão computacional para deteccção de nódulos. Os resultados obtidos mostram que tanto os modelos tradicionais quanto as redes neurais convolucionais são promissores para a tarefa de classificação. Já na detecção as redes neurais convolucionais demonstraram desempenho aprimorado. No entanto, ainda há espaço para melhorias visando aprimorar a precisão na detecção de nódulos em raízes de cultivares de soja.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherCornelio Procopio-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherPrograma de Pós-Graduação em Informática-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectSoja - Biotecnologia-
Palavras-chave: dc.subjectVegetação - Classificação-
Palavras-chave: dc.subjectAgricultura - Aspectos ambientais-
Palavras-chave: dc.subjectSoybean - Biotechnology-
Palavras-chave: dc.subjectVegetation - Classification-
Palavras-chave: dc.subjectAgriculture - Environmental aspects-
Palavras-chave: dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA-
Palavras-chave: dc.subjectCiência da Computação-
Título: dc.titleAnálise, classificação e detecção automática de nódulos em raízes de cultivares de soja-
Título: dc.titleClassification, and automatic detection of nodules in soybean roots-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.