Previsão da quantidade de classes em um problema de classificação hierárquica multirrótulo

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorRanthum, Geraldo-
Autor(es): dc.contributorRanthum, Geraldo-
Autor(es): dc.contributorAlves, Gleifer Vaz-
Autor(es): dc.contributorFidélis, Marcos Vinicius-
Autor(es): dc.creatorOliveira Junior, Milton Soares de-
Data de aceite: dc.date.accessioned2025-08-29T12:57:41Z-
Data de disponibilização: dc.date.available2025-08-29T12:57:41Z-
Data de envio: dc.date.issued2020-11-18-
Data de envio: dc.date.issued2020-11-18-
Data de envio: dc.date.issued2016-11-24-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/15923-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1104972-
Descrição: dc.descriptionIn hierarchical multi-label classification problems, each instance may be associated with one or more labels simultaneously belonging to a hierarchical level subclass or superclass. This classification is performed through learning techniques that from a trained database defines the set of labels that an instance is associated. However, an existing multi-label problem in rating refers to classifiers used in existing techniques which do not provide the number of labels to be defined for new instances presented to the classification model. In the current literature of Learning Machine and Data Mining, these classifiers only define in the training phase the set of labels of entry example with amount already preset in the training phase. Therefore, in this study will be investigated and adapted classification techniques able to predict the number of labels to be associated with a new instance, such that it is contained in a hierarchical and multi-label entries.-
Descrição: dc.descriptionEm problemas de classificação hierárquica multirrótulo, cada exemplo pode estar associado a uma ou mais classes simultaneamente pertencendo a um nível hierárquico de subclasse ou superclasse. Essa classificação é realizada através de técnicas de aprendizagem, que a partir de uma base de dados treinada, define o conjunto de classes que uma instância estará associada. Porém, há um problema na classificação multirrótulo que está associado aos classificadores das técnicas, que não preveem a quantidade de classes que será definida para novas instâncias apresentadas ao modelo de classificação. Na atual literatura de Aprendizagem de Máquina e Mineração de Dados, esses classificadores apenas definem na fase de teste o conjunto de classes de um exemplo de entrada com quantidade já pré-definida na fase de treinamento. Portanto, neste trabalho serão investigadas e adaptadas técnicas de classificação capazes de prever a quantidade de classes que será associada a uma nova instância, tal que ela esteja contida em um conjunto de entrada hierárquico e multirrótulo.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherPonta Grossa-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherDepartamento Acadêmico de Informática-
Publicador: dc.publisherCiência da Computação-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectHierarquias - Classificação-
Palavras-chave: dc.subjectPrevisão-
Palavras-chave: dc.subjectAprendizado do computador-
Palavras-chave: dc.subjectMineração de dados (Computação)-
Palavras-chave: dc.subjectHierarchies - Classification-
Palavras-chave: dc.subjectForecasting-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectData mining-
Palavras-chave: dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO-
Título: dc.titlePrevisão da quantidade de classes em um problema de classificação hierárquica multirrótulo-
Título: dc.titleForecast of label numbers in a hierarchical multilabel classification problem-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.