
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Casanova, Dalcimar | - |
| Autor(es): dc.contributor | Casanova, Dalcimar | - |
| Autor(es): dc.contributor | Favarim, Fábio | - |
| Autor(es): dc.contributor | Fernandes, Anderson Luiz | - |
| Autor(es): dc.creator | Wustro, Bruno Signori | - |
| Data de aceite: dc.date.accessioned | 2025-08-29T12:49:33Z | - |
| Data de disponibilização: dc.date.available | 2025-08-29T12:49:33Z | - |
| Data de envio: dc.date.issued | 2023-07-06 | - |
| Data de envio: dc.date.issued | 2023-07-06 | - |
| Data de envio: dc.date.issued | 2023-06-20 | - |
| Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/31689 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1102540 | - |
| Descrição: dc.description | This study focuses on the development of a robust zebrafish (Danio rerio) tracking system, a species widely used in scientific research, by applying computer vision techniques, such as the YOLO object detector. It addresses the limitations of traditional methods and the need for strict environmental controls in existing automatic systems. The work proposes a more versatile solution, less dependent on environmental conditions. For the system creation, an in-depth literature review was conducted, discussing various tracking methods and the evolution of convolutional neural networks. The employed methodology involved collecting videos of zebrafish in various environments, manually labeling the fish positions, training the YOLOv4 base, and applying data augmentation to enhance the model’s robustness. The results indicate that accurate labeling and the application of data augmentation techniques improve the model’s accuracy. | - |
| Descrição: dc.description | Este estudo enfoca o desenvolvimento de um sistema de rastreamento robusto para peixeszebra (Danio rerio), espécie amplamente utilizada em pesquisas científicas, aplicando técnicas de visão computacional, como o detector de objetos YOLO. Abordando as limitações de métodos tradicionais e a necessidade de controles rígidos do ambiente nos sistemas automáticos existentes. O trabalho propõe uma solução mais versátil e menos dependente de condições ambientais. Para a criação do sistema, uma análise aprofundada de literatura foi realizada, discutindo diversos métodos de rastreamento e a evolução das redes neurais convolucionais. A metodologia empregada envolveu a coleta de vídeos de peixes-zebra em variados ambientes, a rotulação manual das posições dos peixes, o treinamento da base do YOLOv4 e a aplicação de data augmentation para aprimorar a robustez do modelo. Os resultados indicam que a rotulação correta e a aplicação de técnicas de data augmentation melhoram a acurácia do modelo. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
| Publicador: dc.publisher | Pato Branco | - |
| Publicador: dc.publisher | Brasil | - |
| Publicador: dc.publisher | Departamento Acadêmico de Informática | - |
| Publicador: dc.publisher | Engenharia de Computação | - |
| Publicador: dc.publisher | UTFPR | - |
| Direitos: dc.rights | openAccess | - |
| Direitos: dc.rights | http://creativecommons.org/licenses/by/4.0/ | - |
| Palavras-chave: dc.subject | Detectores | - |
| Palavras-chave: dc.subject | Redes neurais (Computação) | - |
| Palavras-chave: dc.subject | Processamento de imagens | - |
| Palavras-chave: dc.subject | Detectors | - |
| Palavras-chave: dc.subject | Neural networks (Computer science) | - |
| Palavras-chave: dc.subject | Image processing | - |
| Palavras-chave: dc.subject | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | - |
| Título: dc.title | Monitoramento de peixes-zebra: rastreamento a partir de vídeos | - |
| Título: dc.title | Zebrafish monitoring: tracking from videos | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: