Prior de regularização para problema de demosaicing com aplicação em CFA’s variados

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorZibetti, Marcelo Victor Wüst-
Autor(es): dc.contributorhttp://lattes.cnpq.br/5150107568634070-
Autor(es): dc.contributorPipa, Daniel Rodrigues-
Autor(es): dc.contributorhttp://lattes.cnpq.br/5604517186200940-
Autor(es): dc.contributorZibetti, Marcelo Victor Wüst-
Autor(es): dc.contributorOliveira, Luiz Eduardo Soares de-
Autor(es): dc.contributorSouza, Mauren Abreu de-
Autor(es): dc.contributorBorba, Gustavo Benvenutti-
Autor(es): dc.creatorFugita, Romário Keiti Pizzatto-
Data de aceite: dc.date.accessioned2025-08-29T12:43:18Z-
Data de disponibilização: dc.date.available2025-08-29T12:43:18Z-
Data de envio: dc.date.issued2016-11-24-
Data de envio: dc.date.issued2016-11-24-
Data de envio: dc.date.issued2015-09-24-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/1841-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1100663-
Descrição: dc.descriptionThis research presents a new proposal to Demosaicing algorithms, using a more flexible approach to deal with the Color filter array (CFA) in single sensor color imaging. The proposed algorithm is structured in the inverse problems model, whose functions employ a CFA adaptive matrix-vector operational model. From this concept, the Demosaicing problem is treated as a cost function minimization with two terms, one referring to the dependence between the estimation and the data provided by the acquisition model, and other term related to features observed in images, which can be explored to form a more precise estimation, this last term is known as Prior. The established proposal is applied in regularization algorithms with focus on the high correlation among color channels (R, G, and B), and in the local smoothness of uniform regions. Both characteristics organize the Prior employed in this work. The minimization proposed is iteratively achieved through IRLS-CG, which is the combination of two efficient minimization algorithms, that presents quick responses, and the capacity to deal with L1 and L2 norm at the same time. The quality of the proposed algorithm is verified in an experiment in which varous CFA were used and a situation with 35dB gaussian noise and another one with no noise applied to the Kodak dataset, and the results were compared with state-of-the-art algorithms, in which the performance of the proposed Prior showed excellent results, including when the CFA is different from Bayer’s, which is the most commonly used pattern.-
Descrição: dc.descriptionCNPq-
Descrição: dc.descriptionEste trabalho tem por objetivo apresentar uma nova proposta aos algoritmos de Demosaicing existentes, utilizando uma abordagem mais flexível quanto ao uso do Color filter array (CFA) em imagens coloridas de único sensor. O algoritmo proposto tem como base a estrutura de problemas inversos, cujo funcionamento utiliza um modelo de operação matriz-vetor que é adaptável ao CFA empregado. A partir deste conceito, o algoritmo trata o problema de Demosaicing como o de minimização de função custo, com um termo referente à dependência da estimativa com os dados obtidos e com o modelo de captura, o outro termo é relacionado aos conhecimentos observados em imagens que podem ser explorados para uma estimativa mais precisa, tal elemento é chamado de Prior. A proposta estabelecida tem como base algoritmos de regularização com foco na alta correlação presente entre os canais de cor (R, G e B), e na suavidade local de regiões uniformes, essa base formaliza o Prior empregado no trabalho. A minimização da proposta é atingida iterativamente através do IRLS-CG, que é a combinação de dois algoritmos de minimização eficientes, que apresenta rápidas respostas, e a capacidade de trabalhar com a norma L1 em conjunto com a norma L2. Com o intuito de atestar a qualidade do algoritmo proposto, foi elaborado um experimento em que o mesmo foi testado com diferentes CFAs e em situação com ruído gaussiano de 35dB e sem ruído algum em imagens da base de dados da Kodak, e os resultados comparados com algoritmos do estado-da-arte, no qual o desempenho da proposta apresentou resultados excelentes, inclusive em CFAs que destoam do padrão Bayer, que é o mais comumente usado na atualidade.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherCuritiba-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica e Informática Industrial-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectAlgorítmos-
Palavras-chave: dc.subjectProblemas inversos (Equações diferenciais)-
Palavras-chave: dc.subjectProcessamento de imagens - Técnicas digitais-
Palavras-chave: dc.subjectFotografia colorida - Técnicas digitais-
Palavras-chave: dc.subjectDetectores ópticos-
Palavras-chave: dc.subjectReconstrução de imagens-
Palavras-chave: dc.subjectModelos matemáticos-
Palavras-chave: dc.subjectEngenharia biomédica-
Palavras-chave: dc.subjectEngenharia elétrica-
Palavras-chave: dc.subjectAlgorithms-
Palavras-chave: dc.subjectInverse problems (Differential equations)-
Palavras-chave: dc.subjectImage processing - Digital techniques-
Palavras-chave: dc.subjectColor photography - Digital techniques-
Palavras-chave: dc.subjectOptical detectors-
Palavras-chave: dc.subjectImage reconstruction-
Palavras-chave: dc.subjectMathematical models-
Palavras-chave: dc.subjectBiomedical engineering-
Palavras-chave: dc.subjectElectric engineering-
Palavras-chave: dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::MATEMATICA DA COMPUTACAO::MODELOS ANALITICOS E DE SIMULACAO-
Título: dc.titlePrior de regularização para problema de demosaicing com aplicação em CFA’s variados-
Título: dc.titleRegularization prior to demosaicing problems with various CFA application-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.