Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Lopes, Fabricio Martins | - |
Autor(es): dc.contributor | https://orcid.org/0000-0002-8786-3313 | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/1660070580824436 | - |
Autor(es): dc.contributor | Lopes, Fabricio Martins | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/1660070580824436 | - |
Autor(es): dc.contributor | Bugatti, Pedro Henrique | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/2177467029991118 | - |
Autor(es): dc.contributor | Saito, Priscila Tiemi Maeda | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/6652293216938994 | - |
Autor(es): dc.creator | Gomes Junior, Julio Marcos | - |
Data de aceite: dc.date.accessioned | 2025-08-29T12:29:01Z | - |
Data de disponibilização: dc.date.available | 2025-08-29T12:29:01Z | - |
Data de envio: dc.date.issued | 2022-11-28 | - |
Data de envio: dc.date.issued | 2022-11-28 | - |
Data de envio: dc.date.issued | 2022-08-15 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/30199 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1096158 | - |
Descrição: dc.description | The lack of attendance of employees is called absenteeism and occurs for various reasons, such as vigorous physical activity, advanced age, and high psychological demands at work. Absenteeism affects direct and indirect costs of companies, and may reach 15% of payroll. Therefore, it is fundamental to know its main causes and contribute to control and mitigation strategies. Neural networks have been successfully applied in the classification of several problems, however they are black boxes, since they do not explain which aspects are considered in their decisions. These aspects are important in healthcare applications, in which it is necessary to clearly explain and interpret the results. In this context, this study presents an approach to classify absenteeism with neural networks, Layer-wise Relevance Propagation (LRP) and relevance aggregation to identify the most relevant features and assign relevance scores individually per class and among all classes. The proposed approach was evaluated by considering a widely used dataset as a reference and comparing with existing methods in the literature. The proposed approach presented the highest assertiveness rate among the compared methods, with an average accuracy of 0.83, identifying the most relevant features for absenteeism classification through a relevance score and it was possible to reduce the dataset features by 75% without significant loss in assertiveness rate. Therefore, the results allow the interpretability of the causes of each absenteeism class and the reduction of dimensionality of the feature space, which contribute to the management of human resources, occupational medicine and the development of strategies for its mitigation. | - |
Descrição: dc.description | A falta de assiduidade dos funcionários é chamada de absenteísmo e ocorre por vários motivos, como atividade física vigorosa, idade avançada e altas demandas psicológicas no trabalho. O absenteísmo afeta os custos diretos e indiretos das empresas, podendo chegar a 15% da folha de pagamento. Portanto, é fundamental conhecer suas principais causas e contribuir para estratégias de controle e mitigação. As redes neurais foram aplicadas com sucesso na classificação de vários problemas, mas são caixas pretas, dado que não explicam quais aspectos são considerados em suas decisões. Estes aspectos são muito importantes em aplicações de saúde, nas quais é necessário explicar e interpretar claramente os resultados. Neste contexto, este trabalho apresenta uma abordagem para classificar o absenteísmo com redes neurais, propagação de relevância em camadas (LRP) e agregação de relevância para identificar as características mais relevantes e atribuir pontuações de relevância individualmente por classe e entre todas as classes. A abordagem proposta foi avaliada considerando um conjunto de dados amplamente utilizado como referência e comparando com métodos existentes na literatura. A abordagem proposta apresentou maior taxa de assertividade entre os métodos comparados, com precisão média de 0,83, identificando as características mais relevantes para a classificação do absenteísmo por meio de uma pontuação de relevância e foi possível reduzir as características do conjunto de dados em 75% sem perda significativa na taxa de assertividade. Portanto, os resultados permitem a interpretabilidade das causas de cada classe de absenteísmo e a redução de dimensionalidade do espaço de características, que contribuem para a gestão de recursos humanos, medicina do trabalho e o desenvolvimento de estratégias para a sua mitigação. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Cornelio Procopio | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Programa de Pós-Graduação em Informática | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Palavras-chave: dc.subject | Absenteísmo (Trabalho) | - |
Palavras-chave: dc.subject | Aprendizado do computador | - |
Palavras-chave: dc.subject | Inteligência artificial | - |
Palavras-chave: dc.subject | Absenteeism (Labor) | - |
Palavras-chave: dc.subject | Machine learning | - |
Palavras-chave: dc.subject | Artificial intelligence | - |
Palavras-chave: dc.subject | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | - |
Palavras-chave: dc.subject | Ciência da Computação | - |
Título: dc.title | Interpretabilidade com agregação de relevância em redes neurais para a predição do absenteísmo | - |
Título: dc.title | Interpretability with relevance aggregation in neural networks for absenteeism prediction | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: