Predição de microbioma saudável baseada em micro-organismos presentes no coral Mussismilia hispida, utilizando uma rede neural profunda

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorPaula Filho, Pedro Luiz de-
Autor(es): dc.contributorLeite, Deborah Catharine de Assis-
Autor(es): dc.contributorPaula Filho, Pedro Luiz de-
Autor(es): dc.contributorCandido Junior, Arnaldo-
Autor(es): dc.contributorAikes Junior, Jorge-
Autor(es): dc.creatorBarque, Barry Malick-
Data de aceite: dc.date.accessioned2025-08-29T12:21:28Z-
Data de disponibilização: dc.date.available2025-08-29T12:21:28Z-
Data de envio: dc.date.issued2022-10-23-
Data de envio: dc.date.issued2022-10-23-
Data de envio: dc.date.issued2021-12-07-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/30003-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1093837-
Descrição: dc.descriptionOne of the most diversified and productive ecosystems in the marine world are corals, providing, in addition to tourism, an important economic contribution to countries that have them on the coast. Thanks to genome sequencing techniques such as 16S sRNA, it is possible to identify the microorganisms that make up the coral microbiome, which play an important role in the health of the latter. The generation of large amounts of data thanks to the low cost of genome sequencing since 2005 offers a possibility for the use of artificial neural networks for the advancement of sciences such as biology and medicine. In this work, the prediction of healthy microbiome based on microorganisms present in the coral Mussismilia hispida collected in five reefs located near a marine protected area (“Parque Natural Municipal do Recife de Fora”) was performed, using a convolutional neural network and some classical machine learning algorithms such as SVM and decision tree, comparing their results obtained in several experiments.-
Descrição: dc.descriptionUm dos ecossistemas mais diversificados e produtivos do mundo marinho são os corais, fornecendo além do turismo, uma contribuição econômica importante aos países que possuem-os no litoral. Graças a técnicas de sequenciamento de genoma como o 16S sRNA é possível identificar os micro-organismos que formam o microbioma dos corais, que tem um papel importante na saúde destes últimos. A geração de grandes quantidades de dados graças aos baixos custos de sequenciamento de genoma desde 2005 oferece uma abertura para o uso de redes neurais artificias para o avanço das ciências como a biologia e a medicina. Neste trabalho foi realizado a predição do microbioma saudável baseada em micro-organismos presentes no coral Mussismilia hispida coletados em cinco recifes localizados próximos a uma área marinha protegida (“Parque Natural Municipal do Recife de Fora”), utilizando uma rede neural convolucional e alguns algorítimos clássicos de aprendizagem de máquina como a SVM e a árvore de decisão, comparando os seus resultados obtidos em vários experimentos.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherMedianeira-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherCiência da Computação-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Direitos: dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/-
Palavras-chave: dc.subjectInteligência artificial-
Palavras-chave: dc.subjectRedes neurais (Computação)-
Palavras-chave: dc.subjectAlgorítmos computacionais-
Palavras-chave: dc.subjectMicrobiologia-
Palavras-chave: dc.subjectArtificial intelligence-
Palavras-chave: dc.subjectNeural networks (Computer science)-
Palavras-chave: dc.subjectComputer algorithms-
Palavras-chave: dc.subjectMicrobiology-
Palavras-chave: dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO-
Título: dc.titlePredição de microbioma saudável baseada em micro-organismos presentes no coral Mussismilia hispida, utilizando uma rede neural profunda-
Título: dc.titleMicrobiome prediction healthy based on microorganisms present in coral Mussismilia hispida, using a deep neural network-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.