Análise de dados para identificação de atividades de estacionamento de veículos por meio de aprendizado de máquina

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorRodrigues, Érick Oliveira-
Autor(es): dc.contributorAscari, Soelaine Rodrigues-
Autor(es): dc.contributorFavarim, Fábio-
Autor(es): dc.contributorFávero, Eliane Maria De Bortoli-
Autor(es): dc.creatorFrandoloso, Vinícius Rodrigues-
Data de aceite: dc.date.accessioned2025-08-29T12:08:33Z-
Data de disponibilização: dc.date.available2025-08-29T12:08:33Z-
Data de envio: dc.date.issued2023-07-06-
Data de envio: dc.date.issued2023-07-06-
Data de envio: dc.date.issued2023-06-16-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/31678-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1089819-
Descrição: dc.descriptionThe difficulty of remembering where a vehicle was parked is a common problem, especially in unfamiliar environments. This study aimed to develop an analysis and investigation regarding the possibility of distinguishing parking activities and vehicle motion through machine learning algorithms. A mobile application was developed using the Flutter framework to collect data through sensors such as the speedometer, gyroscope, and magnetometer, in order to train machine learning algorithms. The k-NN, Random Forest, and SVM algorithms were employed to analyze the collected data. The research was conducted in two phases, using distinct datasets for training and testing. The performance of the algorithms was evaluated based on the accuracy achieved in classification. In summary, the results revealed that the Random Forest algorithm achieved the highest efficacy in classifying vehicle parking, reaching an accuracy of 92.71% in the first phase and 94.12% in the second phase. These results highlight the capability of the proposed system to accurately distinguish parking activities in different contexts.-
Descrição: dc.descriptionA dificuldade de lembrar onde um veículo foi estacionado é um problema comum, principalmente em ambientes desconhecidos. Este estudo teve como objetivo desenvolver uma análise e estudo a respeito da possibilidade de distinguir, por meio de algoritmos de aprendizagem de máquina, as atividades de estacionar e estar em movimento de um veículo. Um aplicativo móvel foi desenvolvido utilizando o framework Flutter com a finalidade de coletar dados por meio de sensores, como o velocímetro, giroscópio e magnetômetro, para treinar algoritmos de aprendizado de máquina. Foram empregados os algoritmos k-NN, Random Forest e SVM para analisar os dados coletados. A pesquisa foi conduzida em duas fases, utilizando conjuntos de dados distintos para treinamento e testes. O desempenho dos algoritmos foi avaliado com base na acurácia alcançada na classificação. Em resumo, os resultados revelaram que o algoritmo Random Forest obteve a melhor eficácia na classificação do estacionamento de veículos, alcançando uma acurácia de 92,71% na primeira fase e 94,12% na segunda fase. Esses resultados destacam a capacidade do sistema proposto em distinguir com precisão as atividades de estacionamento em diferentes contextos.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherPato Branco-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherDepartamento Acadêmico de Informática-
Publicador: dc.publisherEngenharia de Computação-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Direitos: dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/-
Palavras-chave: dc.subjectAprendizado do computador-
Palavras-chave: dc.subjectInterfaces de usuário (Sistemas de computação)-
Palavras-chave: dc.subjectSistema de Posicionamento Global-
Palavras-chave: dc.subjectAlgorítmos computacionais-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectUser interfaces (Computer systems)-
Palavras-chave: dc.subjectGlobal Positioning System-
Palavras-chave: dc.subjectComputer algorithms-
Palavras-chave: dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO-
Título: dc.titleAnálise de dados para identificação de atividades de estacionamento de veículos por meio de aprendizado de máquina-
Título: dc.titleData analysis for identification of vehicle parking activities through machine learning-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.