Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Valentin, Lucio Geronimo | - |
Autor(es): dc.contributor | Martinez, Roberto Wilhelm Krauss | - |
Autor(es): dc.contributor | Valentin, Lucio Geronimo | - |
Autor(es): dc.contributor | Martinez, Roberto Wilhelm Krauss | - |
Autor(es): dc.contributor | Foleiss, Juliano Henrique | - |
Autor(es): dc.contributor | Kawamoto, André Luiz Satoshi | - |
Autor(es): dc.creator | Ramos, Rafael Alessandro | - |
Data de aceite: dc.date.accessioned | 2025-08-29T11:59:30Z | - |
Data de disponibilização: dc.date.available | 2025-08-29T11:59:30Z | - |
Data de envio: dc.date.issued | 2023-03-06 | - |
Data de envio: dc.date.issued | 2023-03-06 | - |
Data de envio: dc.date.issued | 2022-07-01 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/30723 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1087004 | - |
Descrição: dc.description | Internal location systems and their applicability are on the rise, however, mitigating errors and interference are fundamental points for a good result in addition to the cost of applying it, either due to the acquisition of technology or the resources available to make the execution of the localization. In this work, four experiments based on machine learning are carried out to solve the problem of indoor localization within the UTFPR-CM. The main objective is to identify the best way to carry out the mapping of cells (rooms) and in addition to comparing the accuracies obtained by the classical K-NN and SVM classifiers, to then define the most efficient model for the internal location. The experiments were carried out by collecting 1, 5, 6 or more mapping points per cell, and later used in the K-NN and SVM classifiers to obtain the accuracy. To build predictive models, the GridSearch method is used through the Sklearn library. The most efficient method was the scenario in which points were collected every 1.5m, ranging from 14 to 36 points per cell, and using the SVM classifier with linear Kernel, C equal to 1 and Gamma equal to 0.002. Obtaining an accuracy of 82%. This result is promising and opens the way for further research in addition to significant improvements making the solution more efficient. | - |
Descrição: dc.description | Sistemas de localização interna e suas aplicabilidades estão em alta, no entanto, mitigar erros e interferências são pontos fundamentais para um bom resultado além do custo de aplica-la, seja por conta da aquisição de tecnologia ou pelos recursos disponíveis para tornar viável a execução da localização. Neste trabalho, realiza-se quatro experimentos baseados em aprendizado de máquina para resolver o problema de localização interna dentro da UTFPR-CM. O objetivo principal é identificar a melhor forma de realizar o mapeamento das células (salas) e além da comparação entre as acurácias obtidas pelos classificadores clássicos K-NN e SVM, para então definir qual o modelo mais eficiente para a localização interna. Os experimentos foram realizados coletando 1, 5, 6 ou mais pontos de mapeamento por célula, e posteriormente utilizado nos classificadores K-NN e SVM para obter a acurácia de acerto. Para construção dos modelos preditivos é utilizado o método de GridSearch através da biblioteca Sklearn. O método mais eficiente foi o cenário no qual foram coletados pontos a cada 1,5m variando de 14 a 36 pontos por célula e utilizado o classificador SVM com Kernel linear, C igual a 1 e Gamma igual a 0,002. Obtendo uma acurácia de 82% de acerto. Este resultado é promissor e abre campo para continuidade da pesquisa além de melhorias significantes tornando a solução mais eficiente. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Campo Mourao | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Departamento Acadêmico de Computação | - |
Publicador: dc.publisher | Ciência da Computação | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Direitos: dc.rights | http://creativecommons.org/licenses/by/4.0/ | - |
Palavras-chave: dc.subject | Aprendizado do computador | - |
Palavras-chave: dc.subject | Ondas de rádio | - |
Palavras-chave: dc.subject | Percepção de padrões | - |
Palavras-chave: dc.subject | Redes locais sem fio | - |
Palavras-chave: dc.subject | Instalações universitárias | - |
Palavras-chave: dc.subject | Machine learning | - |
Palavras-chave: dc.subject | Radio waves | - |
Palavras-chave: dc.subject | Pattern perception | - |
Palavras-chave: dc.subject | Wireless LANs | - |
Palavras-chave: dc.subject | College facilities | - |
Palavras-chave: dc.subject | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | - |
Título: dc.title | Comparação entre técnicas de classificação aplicadas em sinais de wi-fi para localização de células nas instalações da UTFPR-CM | - |
Título: dc.title | Comparison between classification techniques applied to wi-fi signals, for cell location, in the UTFPR-CM facilities | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: