Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Brante, Glauber Gomes de Oliveira | - |
Autor(es): dc.contributor | Lima Junior, Francisco Rodrigues | - |
Autor(es): dc.contributor | Lima Junior, Francisco Rodrigues | - |
Autor(es): dc.contributor | Brante, Glauber Gomes de Oliveira | - |
Autor(es): dc.contributor | Furucho, Mariana Antonia Aguiar | - |
Autor(es): dc.contributor | Loures, Eduardo de Freitas Rocha | - |
Autor(es): dc.creator | Lunardi, Antonio Ricardo | - |
Data de aceite: dc.date.accessioned | 2025-08-29T11:42:55Z | - |
Data de disponibilização: dc.date.available | 2025-08-29T11:42:55Z | - |
Data de envio: dc.date.issued | 2023-09-22 | - |
Data de envio: dc.date.issued | 2023-09-22 | - |
Data de envio: dc.date.issued | 2022-06-10 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/32484 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1081907 | - |
Descrição: dc.description | Supply chain management is an essential practice for nowadays market to companies success. Literature contains many quantitative methods for supply chain performance evaluation, that are used in order to improve organizations operations. However, there are not many AI (artificial intelligence) quantitave methods in the literature. In this context, the present study aims to compare artificial neural networks with neuro-fuzzy networks, in the context of making function approximations using the SCOR® (Supply Chain Operations Reference) model. Three network models based on MLP (multi-layer perceptron) ANN (artificial neural networks) or ANFIS (adaptive-based-neuro-fuzzy inference system) are proposed, each one based on a different SCOR® performance indicator. Many topologies are made using distinct configurations. The study showed that in general ANFIS have noticeable higher capabilities. T-paired hypothesis tests were used in order to validate the results, being successful in all cases. | - |
Descrição: dc.description | A gestão da cadeia de suprimentos é uma atividade fundamental no mercado contemporâneo para o funcionamento das empresas. São abordados na literatura muitos métodos quantitativos para avaliação de desempenho de cadeias de suprimentos com a finalidade de melhorar o funcionamento de uma organização por meio de diversas abordagens. No entanto a literatura não encontra muitos estudos de métodos quantitativos com técnicas de IA (inteligência artificial). Nesse contexto, o estudo busca a comparar como se adequam as RNAs (redes neurais artificiais) artificiais e as redes neuro-fuzzy, para fazer aproximações de função do modelo SCOR® (Supply Chain Operations Reference). São propostos três modelos de rede baseados em RNAs PMC (perceptron multicamada) ou ANFIS (adaptative-basedneuro-fuzzy inference system), sendo cada modelo baseado em um indicador de desempenho do SCOR®, por meio de várias topologias com configurações distintas para cada um deles. O estudo concluiu matematicamente que, de modo geral, as redes ANFIS possuem capacidade consideravelmente maior. Testes de hipótese t pareados foram usados para validar os resultados, tendo obtido sucesso em todos os casos. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Curitiba | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Engenharia de Controle e Automação | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Direitos: dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | - |
Palavras-chave: dc.subject | Redes neurais (Computação) | - |
Palavras-chave: dc.subject | Inteligência artificial | - |
Palavras-chave: dc.subject | Sistemas difusos | - |
Palavras-chave: dc.subject | Logística empresarial | - |
Palavras-chave: dc.subject | Neural networks (Computer science) | - |
Palavras-chave: dc.subject | Artificial intelligence | - |
Palavras-chave: dc.subject | Fuzzy Systems | - |
Palavras-chave: dc.subject | Business logistics | - |
Palavras-chave: dc.subject | CNPQ::ENGENHARIAS | - |
Título: dc.title | Comparação de topologias para ANFIS e RNAS aplicadas a indicadores de desempenho de cadeias de suprimentos | - |
Título: dc.title | ANFIS and ANNS topologies comparison applied on suply chain performance indicators | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: