Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Santos, Allan Erlikhman Medeiros | - |
Autor(es): dc.creator | Lana, Milene Sabino | - |
Autor(es): dc.creator | Pereira, Tiago Martins | - |
Data de aceite: dc.date.accessioned | 2025-08-21T16:01:24Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T16:01:24Z | - |
Data de envio: dc.date.issued | 2022-09-23 | - |
Data de envio: dc.date.issued | 2022-09-23 | - |
Data de envio: dc.date.issued | 2021 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/jspui/handle/123456789/15475 | - |
Fonte completa do material: dc.identifier | https://link.springer.com/article/10.1007/s00521-021-06618-y | - |
Fonte completa do material: dc.identifier | https://doi.org/10.1007/s00521-021-06618-y | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1030217 | - |
Descrição: dc.description | Solutions in geotechnics have been optimizing with the aid of machine learning methods. The aim of this paper is to apply different machine learning algorithms in order to achieve rock mass classification. It is demonstrated that RMR classifi- cation system can be obtained using only variables which are closely related to rock mass quality, instead of all RMR variables, without missing significant accuracy. The different machine learning algorithms used are the naı ̈ve Bayes, random forest, artificial neural networks and support vector machines. The variables to calculate RMR, selected by factor analysis, are: rock strength, rock weathering, spacing, persistence and aperture of discontinuities and presence of water. The machine learning models were trained and tested thirty times, with random subsampling, using two-thirds of the total database for training sample. The models presented average accuracy greater than 0.81, which was calculated from the confusion matrix, using the proportion of true positives and true negatives in the test sample. Significant values of efficiency, precision and reproducibility rates were achieved. The study shows the application of machine learning algorithms allows obtaining the RMR classes, even with a small number of variables. In addition, the results of the evaluation metrics of the developed algorithms show that the methodology can be applied to new database, working as a valuable way to achieve rock mass classification. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Direitos: dc.rights | restrito | - |
Palavras-chave: dc.subject | Machine learning algorithms | - |
Palavras-chave: dc.subject | Geomechanical database | - |
Palavras-chave: dc.subject | Multivariate database | - |
Palavras-chave: dc.subject | Open pit mine | - |
Título: dc.title | Evaluation of machine learning methods for rock mass classification. | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: