
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Mendes, Júlia Castro | - |
| Autor(es): dc.contributor | Cury, Alexandre Abrahão | - |
| Autor(es): dc.contributor | Mendes, Júlia Castro | - |
| Autor(es): dc.contributor | Cury, Alexandre Abrahão | - |
| Autor(es): dc.contributor | Carvalho, José Maria Franco de | - |
| Autor(es): dc.contributor | Santos, Tatiana Barreto dos | - |
| Autor(es): dc.creator | Penido, Rúben El-Katib | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T16:00:09Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T16:00:09Z | - |
| Data de envio: dc.date.issued | 2022-05-10 | - |
| Data de envio: dc.date.issued | 2022-05-10 | - |
| Data de envio: dc.date.issued | 2021 | - |
| Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/jspui/handle/123456789/14895 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1029710 | - |
| Descrição: dc.description | Programa de Pós-Graduação em Engenharia Civil. Departamento de Engenharia Civil, Escola de Minas, Universidade Federal de Ouro Preto. | - |
| Descrição: dc.description | Nos últimos anos, estudos vêm sendo conduzidos visando disseminar a reutilização de escória de aciaria como agregado para concretos. Entretanto, a ausência de metodologias para obtenção de traços de concretos de escória de aciaria tem dificultado as pesquisas e comprometido o seu uso em larga escala. Além disso, as metodologias convencionalmente adotadas para a definição de traços de concreto envolvem tabelas empíricas e a necessidade de se moldar e romper corpos de prova, demandando tempo e recursos. Neste contexto, o presente trabalho teve como objetivo desenvolver modelos baseados em aprendizado de máquinas para a previsão da resistência à compressão de concretos de escória de aciaria a partir de seus traços. Para este fim, foi realizado um levantamento de dados de concretos de escória de aciaria na literatura e aplicadas quatro técnicas de aprendizagem de máquina: regressão por vetores suporte (SVR), redes neurais artificiais (ANN), árvore de decisão com algoritmo de boosting (XGBoost) e processo gaussiano de regressão (GPR). Os resultados foram avaliados por meio de três indicadores: erro absoluto médio (MAE), erro quadrático médio (RMSE) e coeficiente de determinação (R²). Numa primeira etapa, os modelos com o banco de dados elaborado foram validados de forma cruzada (k = 10). Em seguida, foram utilizados dados experimentais para validar os modelos construídos. Na primeira etapa, o modelo que alcançou o melhor desempenho foi o ANN, com R² de 0,79, com os demais variando entre 0,68 e 0,73. Os MAEs variaram entre 4,73 e 5,51 MPa. No entanto, a validação experimental obteve resultados insatisfatórios - os modelos de GPR, XGBoost e SVR apresentaram valores de R² negativos. Isso mostra que o tamanho do banco de dados e a variabilidade do resíduo estudado influenciam significativamente a qualidade dos modelos propostos. Desse modo, o presente trabalho traz os primeiros passos para o desenvolvimento de estratégias de desenvolvimento de traços para concretos não-convencionais. Em última análise, buscamos reduzir o impacto das indústrias siderúrgicas no meio ambiente e contribuir para o entendimento dos fatores que influenciam os traços de concreto. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Direitos: dc.rights | aberto | - |
| Direitos: dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | - |
| Direitos: dc.rights | Autorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 03/05/2022 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho, desde que sejam citados o autor e o licenciante. Não permite o uso para fins comerciais nem a adaptação. | - |
| Palavras-chave: dc.subject | Escória - metalurgia | - |
| Palavras-chave: dc.subject | Escória de aciaria | - |
| Palavras-chave: dc.subject | Concreto - resistência à compressão | - |
| Palavras-chave: dc.subject | Aprendizado do computador | - |
| Título: dc.title | Aprendizado de máquina aplicado à construção civil : estimativa da resistência à compressão de concretos de escória de aciaria. | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional - UFOP | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: