A basis- and integral-free representation of time-dependent perturbation theory via the Omega matrix calculus.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorFrancisco Neto, Antônio-
Data de aceite: dc.date.accessioned2025-08-21T15:59:34Z-
Data de disponibilização: dc.date.available2025-08-21T15:59:34Z-
Data de envio: dc.date.issued2025-01-08-
Data de envio: dc.date.issued2025-01-08-
Data de envio: dc.date.issued2023-
Fonte completa do material: dc.identifierhttps://www.repositorio.ufop.br/handle/123456789/19444-
Fonte completa do material: dc.identifierhttps://doi.org/10.4171/AIHPD/173-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1029470-
Descrição: dc.descriptionWe obtain a basis- and integral-free representation of the n-term in time-dependent perturbation theory of the quantum time-evolution operator. The main technical tool to construct the aforementioned representation comprises the Omega matrix calculus; that is, an exten sion of MacMahon’s partition analysis to the realm of matrix calculus. In particular, we show that if we specialize our formulation to the time-independent and finite-dimensional case, we recover Putzer (1966) original formulation to compute the matrix exponential avoiding the Jordan canonical form. Furthermore, if we use an explicit basis for the time-independent part of the generator of evolution, then our work implies a representation of the perturbation expansion similar to an approach discussed in the recent work of Kalev and Hen (2021) using divided differences. Finally, we obtain closed form expressions which generalize and unify all the perturbation calculations considered in Kalev and Hen (2021) and advance some considerations regarding degeneracy associated with the unperturbed Hamiltonian in the context of adiabatic switching.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsaberto-
Direitos: dc.rightsThis work is under a CC BY 4.0 license. Fonte: PDF do artigo.-
Título: dc.titleA basis- and integral-free representation of time-dependent perturbation theory via the Omega matrix calculus.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.