Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Moreira, Gladston Juliano Prates | - |
Autor(es): dc.contributor | Moreira, Gladston Juliano Prates | - |
Autor(es): dc.contributor | Souza, Marcone Jamilson Freitas | - |
Autor(es): dc.contributor | Duarte, Anderson Ribeiro | - |
Autor(es): dc.contributor | Cançado, André Luiz Fernandes | - |
Autor(es): dc.creator | Oliveira, Dênis Ricardo Xavier de | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:56:57Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:56:57Z | - |
Data de envio: dc.date.issued | 2017-05-15 | - |
Data de envio: dc.date.issued | 2017-05-15 | - |
Data de envio: dc.date.issued | 2017 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/handle/123456789/7737 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1028300 | - |
Descrição: dc.description | Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto. | - |
Descrição: dc.description | Métodos visando a detecção e inferência de clusters espaciais são de grande relevância. Isso se deve a aplicabilidade em problemas de notória importância como na saúde publica, mas também pelo interesse científico no desenvolvimento eficaz destes métodos. As principais técnicas são baseadas na estatística espacial scan e muitas abordagens vinculam esta estatística a métodos estocásticos de otimização. Recentemente, em conjunto com a estatística, funções de penalização têm sido propostas, com a finalidade de controlar a irregularidade excessiva da forma dos clusters candidatos. Este estudo apresenta um novo método baseado na estatística scan em conjunto com uma nova função de penalização geográfica dos clusters candidatos que apresentam enormes lacunas em suas áreas, a função de Dispersão. O objetivo principal é propor uma abordagem de otimização multiobjetivo para o problema visando maximizar o valor da estatística e minimizar o valor da nova função de penalização, usando a técnica de computação evolucionaria Particle Swarm Optimization, resultando ao final em um conjunto de soluções não-dominadas representadas pela fronteira Pareto-ótimo. Resultados obtidos com a realização de experimentos usando um conjunto de aplicações do problema mostram que a abordagem multiobjetivo associada a função de dispersão é um método satisfatório para o problema. Demonstrou-se que, em comparação com a função de penalização por não-conectividade e compacidade geométrica, a abordagem associada a função de dispersão é rápida e adequada para a detecção de clusters espaciais irregulares. | - |
Descrição: dc.description | Methods for the detection and inference of spatial clusters are of great relevance. It is due to its applicability in problems of notorious importance as in public health, but also for the scienti c interest in the e ective development of these methods. The main techniques are based on spatial scan statistics and many approaches link this statistic to stochastic optimization methods. Recently, in conjunction with this statistic, penalty functions have been proposed, for the purpose to control the excessive irregularity of the shape of candidate clusters. This study presents a new method based on scan statistics in conjunction with a new geographic penalization function of candidate clusters that present huge gaps in their areas, the Dispersion function. The main objective is to propose a multiobjective optimization approach to the problem aiming to maximize the value of the statistic and to minimize the value of the new penalty function using the evolutionary computation technique Particle Swarm Optimization, resulting in a set of non-dominated solutions represented by the Pareto-optimal front. Results obtained with experiments using a set of applications of the problem show that the multiobjective approach associated with the dispersion function is a satisfactory method for the problem. It has been shown that, comparing to the non-connectivity and geometric compactness penalty function, the approach associated with the dispersion function is faster and more appropriate for the detection of irregular shape spatial clusters. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | aberto | - |
Direitos: dc.rights | Autorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 12/05/2017 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho desde que sejam citados o autor e o licenciante. Não permite o uso para fins comerciais nem a adaptação. | - |
Palavras-chave: dc.subject | Particle Swarm Optimization | - |
Palavras-chave: dc.subject | Otimização multiobjetivo | - |
Palavras-chave: dc.subject | Funções de penalização | - |
Título: dc.title | O problema de detecção de clusters espaciais irregulares : uma nova abordagem multiobjetivo. | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: