A performance evaluation in multivariate outliers identification methods.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBarbosa, Josino José-
Autor(es): dc.creatorDuarte, Anderson Ribeiro-
Autor(es): dc.creatorMartins, Helgem de Souza Ribeiro-
Data de aceite: dc.date.accessioned2025-08-21T15:55:22Z-
Data de disponibilização: dc.date.available2025-08-21T15:55:22Z-
Data de envio: dc.date.issued2022-03-03-
Data de envio: dc.date.issued2022-03-03-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/14617-
Fonte completa do material: dc.identifierhttps://doi.org/10.5902/2179460X41662-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1027539-
Descrição: dc.descriptionMethodologies for identifying multivariate outliers are extremely important in statistical analysis. Outliers may reveal relevant information to variables under investigation. Statistical applications without prior identification of possible extreme values may yield controversial results and induce mistaken decision making. In many contexts, outliers are points of great practical interest. Given this, this paper seeks to discuss methodologies for the detection of multivariate outliers through a fair and adequate comparative technique in their simulation procedure. The comparison considers detection techniques based on Mahalanobis distance, besides a methodology based on cluster analysis technique. Sensitivity, specificity, and accuracy metrics are used to measure the method quality. An analysis of the computational time required to perform the procedures is evaluated. The technique based on cluster analysis revealed a noticeable superiority over the others in detection quality and also in execution time.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsaberto-
Direitos: dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Fonte: o PDF do artigo.-
Palavras-chave: dc.subjectSimulation-
Palavras-chave: dc.subjectCluster analysis-
Palavras-chave: dc.subjectAccuracy-
Palavras-chave: dc.subjectComputational time-
Título: dc.titleA performance evaluation in multivariate outliers identification methods.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.