Explaining machine learning based diagnosis of COVID-19 from routine blood tests with decision trees and criteria graphs.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorAlves, Marcos Antonio-
Autor(es): dc.creatorCastro, Giulia Zanon de-
Autor(es): dc.creatorOliveira, Bruno Alberto Soares-
Autor(es): dc.creatorFerreira, Leonardo Augusto-
Autor(es): dc.creatorRamírez, Jaime Arturo-
Autor(es): dc.creatorSilva, Rodrigo César Pedrosa-
Autor(es): dc.creatorGuimarães, Frederico Gadelha-
Data de aceite: dc.date.accessioned2025-08-21T15:52:56Z-
Data de disponibilização: dc.date.available2025-08-21T15:52:56Z-
Data de envio: dc.date.issued2022-11-09-
Data de envio: dc.date.issued2022-11-09-
Data de envio: dc.date.issued2020-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/15797-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/j.compbiomed.2021.104335-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1026441-
Descrição: dc.descriptionThe sudden outbreak of coronavirus disease 2019 (COVID-19) revealed the need for fast and reliable automatic tools to help health teams. This paper aims to present understandable solutions based on Machine Learning (ML) techniques to deal with COVID-19 screening in routine blood tests. We tested different ML classifiers in a public dataset from the Hospital Albert Einstein, São Paulo, Brazil. After cleaning and pre-processing the data has 608 patients, of which 84 are positive for COVID-19 confirmed by RT-PCR. To understand the model decisions, we introduce (i) a local Decision Tree Explainer (DTX) for local explanation and (ii) a Criteria Graph to aggregate these explanations and portrait a global picture of the results. Random Forest (RF) classifier achieved the best results (accuracy 0.88, F1–score 0.76, sensitivity 0.66, specificity 0.91, and AUROC 0.86). By using DTX and Criteria Graph for cases confirmed by the RF, it was possible to find some patterns among the individuals able to aid the clinicians to understand the interconnection among the blood parameters either globally or on a case-by- case basis. The results are in accordance with the literature and the proposed methodology may be embedded in an electronic health record system.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsaberto-
Direitos: dc.rightsThis article is made available under the Elsevier license (http://www.elsevier.com/open-access/userlicense/1.0/). Fonte: o PDF do artigo.-
Palavras-chave: dc.subjectExplainable artificial intelligence-
Título: dc.titleExplaining machine learning based diagnosis of COVID-19 from routine blood tests with decision trees and criteria graphs.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.