
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.creator | Rocha, Ronilson | - |
| Autor(es): dc.creator | Medrano Torricos, Rene Orlando | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T15:52:29Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T15:52:29Z | - |
| Data de envio: dc.date.issued | 2022-01-20 | - |
| Data de envio: dc.date.issued | 2022-01-20 | - |
| Data de envio: dc.date.issued | 2019 | - |
| Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/jspui/handle/123456789/14375 | - |
| Fonte completa do material: dc.identifier | https://link.springer.com/article/10.1007%2Fs11071-020-06039-x | - |
| Fonte completa do material: dc.identifier | https://doi.org/10.1007/s11071-020-06039-x | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1026239 | - |
| Descrição: dc.description | This work investigates the dynamics of the Chua circuit with cubic polynomial nonlinearity using methods for stability analysis based on linearization and frequency response. Root locus technique maps eigenvalues of the linearized system in order to analyze the local stability, which allows to verify dynamic features, motion patterns, and attractor topologies. The method based on describing functions allows analyze effects of the cubic nonlinearity in the system, as well as predict equilibrium and fixed points, periodic and chaotic orbits, limit cycles, multistability and hidden dynamics, unstable states, and bifurcations. The stability of the Chua circuit with cubic polynomial nonlinearity is analyzed using both approaches in order to identify and map dynamics in parameter spaces. Numerical investigations based on computational simulations corroborate the theoretical results obtained using this stability analysis. This theoretical analysis and the numerical investigations present interesting insights about the dynamics of the Chua circuit with cubic polynomial nonlinearity and provides a design tool for electroelectronic implementations. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | en | - |
| Direitos: dc.rights | restrito | - |
| Título: dc.title | Stability analysis for the Chua circuit with cubic polynomial nonlinearity based on root locus technique and describing function method. | - |
| Aparece nas coleções: | Repositório Institucional - UFOP | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: