Asymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorErcole, Grey-
Autor(es): dc.creatorPereira, Gilberto de Assis-
Autor(es): dc.creatorSanchis, Remy de Paiva-
Data de aceite: dc.date.accessioned2025-08-21T15:49:53Z-
Data de disponibilização: dc.date.available2025-08-21T15:49:53Z-
Data de envio: dc.date.issued2023-02-02-
Data de envio: dc.date.issued2023-02-02-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/16104-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s10231-019-00854-9-
Fonte completa do material: dc.identifierhttps://doi.org/10.1007/s10231-019-00854-9-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1025220-
Descrição: dc.descriptionLet be a smooth, bounded domain of RN , ω be a positive, L1-normalized function, and 0 < s < 1 < p. We study the asymptotic behavior, as p → ∞, of the pair p p, u p, where p is the best constant C in the Sobolev-type inequality C exp (log |u| p)ωdx ≤ [u] p s,p ∀ u ∈ Ws,p 0 () and u p is the positive, suitably normalized extremal function corresponding to p. We show that the limit pairs are closely related to the problem of minimizing the quotient |u|s / exp (log |u|)ωdx , where |u|s denotes the s-Hölder seminorm of a function u ∈ C0,s 0 ().-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectp-Laplacian-
Palavras-chave: dc.subjectViscosity solution-
Título: dc.titleAsymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.