Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Santana, Adrielle de Carvalho | - |
Autor(es): dc.creator | Barbosa, Adriano Vilela | - |
Autor(es): dc.creator | Yehia, Hani Camille | - |
Autor(es): dc.creator | Laboissière, Rafael Michelin | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:49:31Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:49:31Z | - |
Data de envio: dc.date.issued | 2022-01-20 | - |
Data de envio: dc.date.issued | 2022-01-20 | - |
Data de envio: dc.date.issued | 2020 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/jspui/handle/123456789/14366 | - |
Fonte completa do material: dc.identifier | https://doi.org/10.1186/s12868-020-00605-0 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1025038 | - |
Descrição: dc.description | Background: A common problem in neurophysiological signal processing is the extraction of meaningful information from high dimension, low sample size data (HDLSS). We present RoLDSIS (regression on low-dimension spanned input space), a regression technique based on dimensionality reduction that constrains the solution to the subspace spanned by the available observations. This avoids regularization parameters in the regression procedure, as needed in shrinkage regression methods. Results: We applied RoLDSIS to the EEG data collected in a phonemic identifcation experiment. In the experiment, morphed syllables in the continuum /da/–/ta/ were presented as acoustic stimuli to the participants and the eventrelated potentials (ERP) were recorded and then represented as a set of features in the time-frequency domain via the discrete wavelet transform. Each set of stimuli was chosen from a preliminary identifcation task executed by the participant. Physical and psychophysical attributes were associated to each stimulus. RoLDSIS was then used to infer the neurophysiological axes, in the feature space, associated with each attribute. We show that these axes can be reliably estimated and that their separation is correlated with the individual strength of phonemic categorization. The results provided by RoLDSIS are interpretable in the time-frequency domain and may be used to infer the neurophysiological correlates of phonemic categorization. A comparison with commonly used regularized regression techniques was carried out by cross-validation. Conclusion: The prediction errors obtained by RoLDSIS are comparable to those obtained with Ridge Regression and smaller than those obtained with LASSO and SPLS. However, RoLDSIS achieves this without the need for crossvalidation, a procedure that requires the extraction of a large amount of observations from the data and, consequently, a decreased signal-to-noise ratio when averaging trials. We show that, even though RoLDSIS is a simple technique, it is suitable for the processing and interpretation of neurophysiological signals. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Direitos: dc.rights | aberto | - |
Direitos: dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. Fonte: o PDF do artigo. | - |
Palavras-chave: dc.subject | Electroencephalography | - |
Palavras-chave: dc.subject | Event-related potentials | - |
Palavras-chave: dc.subject | Linear regression | - |
Palavras-chave: dc.subject | High dimension low sample size problem | - |
Palavras-chave: dc.subject | Dimension reduction | - |
Título: dc.title | A dimension reduction technique applied to regression on high dimension, low sample size neurophysiological data sets. | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: