Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Gomides, Amanda Figueiredo | - |
Autor(es): dc.creator | Ferreira, Geraldo César Gonçalves | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:49:24Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:49:24Z | - |
Data de envio: dc.date.issued | 2023-08-18 | - |
Data de envio: dc.date.issued | 2023-08-18 | - |
Data de envio: dc.date.issued | 2021 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/jspui/handle/123456789/17264 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1024990 | - |
Descrição: dc.description | Para além das formas tradicionais de cálculo de áreas de figuras planas, existem métodos pouco explorados e difundidos. O teorema de Pick é um desses métodos, que relaciona número de pontos internos e de borda de um polígono simples (sem buracos e cujos lados não se cruzam) inscrito em uma malha quadriculada para calcular sua área. E a partir da associação deste teorema com a Fórmula de Euler para figuras planas poligonais, que relaciona seu número de faces, arestas, vértices e buracos, podemos criar uma generalização do Teorema de Pick que abrange polígonos não simples, desde que inscritos em uma malha quadriculada. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | aberto | - |
Direitos: dc.rights | Os trabalhos publicados pelo periódico RMAT - Revista de Matemática estão sob uma licença Creative Commons que permite copiar, distribuir e transmitir o trabalho, desde que sejam citados o autor e o licenciante. Fonte: RMAT - Revista de Matemática <https://periodicos.ufop.br/rmat/about/submissions>. Acesso em: 19 maio 2022. | - |
Palavras-chave: dc.subject | Teorema de Pick | - |
Palavras-chave: dc.subject | Teorema de Euler | - |
Palavras-chave: dc.subject | Polígonos | - |
Palavras-chave: dc.subject | Áreas | - |
Título: dc.title | De Pick a Euler : exemplos e demonstrações. | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: