Spin coherent states, binomial convolution and a generalization of the Möbius function.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorFrancisco Neto, Antônio-
Data de aceite: dc.date.accessioned2025-08-21T15:48:53Z-
Data de disponibilização: dc.date.available2025-08-21T15:48:53Z-
Data de envio: dc.date.issued2017-09-18-
Data de envio: dc.date.issued2017-09-18-
Data de envio: dc.date.issued2012-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/handle/123456789/8735-
Fonte completa do material: dc.identifierhttp://iopscience.iop.org/article/10.1088/1751-8113/45/39/395308-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1088/1751-8113/45/39/395308-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1024765-
Descrição: dc.descriptionBy making use of a G¨odel-type relabeling of quantum states we show that spin coherent states play a fundamental role in number theory. We generalize the representation of the M¨obius function obtained in Spector (1990 Commun. Math. Phys. 127 239) by giving a quantum mechanical interpretation of a generalization of the M¨obius function: the Fleck function. We also show that inversion convolution theorem for the Liouville function and some key relations giving theM¨obius inversion theorem can be understood from the orthogonality properties of the spin coherent states. Our results show a fruitful interplay of quantum mechanics and number theory.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Título: dc.titleSpin coherent states, binomial convolution and a generalization of the Möbius function.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.