Robust automated cardiac arrhythmia detection in ECG beat signals.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorAlbuquerque, Victor Hugo Costa de-
Autor(es): dc.creatorNunes, Thiago Monteiro-
Autor(es): dc.creatorPereira, Danillo Roberto-
Autor(es): dc.creatorLuz, Eduardo José da Silva-
Autor(es): dc.creatorGomes, David Menotti-
Autor(es): dc.creatorPapa, João Paulo-
Autor(es): dc.creatorTavares, João Manuel R. S.-
Data de aceite: dc.date.accessioned2025-08-21T15:47:46Z-
Data de disponibilização: dc.date.available2025-08-21T15:47:46Z-
Data de envio: dc.date.issued2018-01-24-
Data de envio: dc.date.issued2018-01-24-
Data de envio: dc.date.issued2016-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/handle/123456789/9333-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s00521-016-2472-8-
Fonte completa do material: dc.identifierhttps://doi.org/10.1007/s00521-016-2472-8-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1024276-
Descrição: dc.descriptionNowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectElectrophysiological signals-
Palavras-chave: dc.subjectCardiac dysrhythmia classification-
Palavras-chave: dc.subjectFeature extraction-
Palavras-chave: dc.subjectPattern recognition-
Título: dc.titleRobust automated cardiac arrhythmia detection in ECG beat signals.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.