A fuzzy data reduction cluster method based on boundary information for large datasets.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorSilva, Gustavo Rodrigues Lacerda-
Autor(es): dc.creatorCirino Neto, Paulo-
Autor(es): dc.creatorTorres, Luiz Carlos Bambirra-
Autor(es): dc.creatorBraga, Antônio de Pádua-
Data de aceite: dc.date.accessioned2025-08-21T15:47:32Z-
Data de disponibilização: dc.date.available2025-08-21T15:47:32Z-
Data de envio: dc.date.issued2022-09-15-
Data de envio: dc.date.issued2022-09-15-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/15309-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s00521-019-04049-4-
Fonte completa do material: dc.identifierhttps://doi.org/10.1007/s00521-019-04049-4-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1024187-
Descrição: dc.descriptionThe fuzzy c-means algorithm (FCM) is aimed at computing the membership degree of each data point to its corresponding cluster center. This computation needs to calculate the distance matrix between the cluster center and the data point. The main bottleneck of the FCM algorithm is the computing of the membership matrix for all data points. This work presents a new clustering method, the bdrFCM (boundary data reduction fuzzy c-means). Our algorithm is based on the original FCM proposal, adapted to detect and remove the boundary regions of clusters. Our implementation efforts are directed in two aspects: processing large datasets in less time and reducing the data volume, maintaining the quality of the clusters. A significant volume of real data application ([106 records) was used, and we identified that bdrFCM implementation has good scalability to handle datasets with millions of data points.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectFuzzy c-means-
Título: dc.titleA fuzzy data reduction cluster method based on boundary information for large datasets.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.