On the direct and inverse zero-sum problems over Cn ⋊s C2.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorAvelar, Danilo Vilela-
Autor(es): dc.creatorBrochero Martinez, Fabio Enrique-
Autor(es): dc.creatorRibas, Sávio-
Data de aceite: dc.date.accessioned2025-08-21T15:47:24Z-
Data de disponibilização: dc.date.available2025-08-21T15:47:24Z-
Data de envio: dc.date.issued2023-08-18-
Data de envio: dc.date.issued2023-08-18-
Data de envio: dc.date.issued2021-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/17271-
Fonte completa do material: dc.identifierhttps://www.sciencedirect.com/science/article/pii/S0097316523000195-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/j.jcta.2023.105751-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1024149-
Descrição: dc.descriptionLet Cn be the cyclic group of order n. In this paper, we provide the exact values of some zero-sum constants over Cn ⋊s C2 where s 6≡ ±1 (mod n), namely η-constant, Gao constant, and Erdős- Ginzburg-Ziv constant (the latter for all but a “small” family of cases). As a consequence, we prove the Gao’s and Zhuang-Gao’s Conjectures for groups of this form. We also solve the associated inverse problems by characterizing the structure of product-one free sequences over Cn ⋊s C2 of maximum length.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Título: dc.titleOn the direct and inverse zero-sum problems over Cn ⋊s C2.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.