VGGFace-Ear : an extended dataset for unconstrained ear recognition.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorRamos Cooper, Solange-
Autor(es): dc.creatorGómez Nieto, Erick Mauricio-
Autor(es): dc.creatorCámara Chávez, Guillermo-
Data de aceite: dc.date.accessioned2025-08-21T15:42:43Z-
Data de disponibilização: dc.date.available2025-08-21T15:42:43Z-
Data de envio: dc.date.issued2022-10-13-
Data de envio: dc.date.issued2022-10-13-
Data de envio: dc.date.issued2021-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/15683-
Fonte completa do material: dc.identifierhttps://doi.org/10.3390/s22051752-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1022238-
Descrição: dc.descriptionRecognition using ear images has been an active field of research in recent years. Besides faces and fingerprints, ears have a unique structure to identify people and can be captured from a distance, contactless, and without the subject’s cooperation. Therefore, it represents an appealing choice for building surveillance, forensic, and security applications. However, many techniques used in those applications—e.g., convolutional neural networks (CNN)—usually demand large-scale datasets for training. This research work introduces a new dataset of ear images taken under uncontrolled conditions that present high inter-class and intra-class variability. We built this dataset using an existing face dataset called the VGGFace, which gathers more than 3.3 million images. in addition, we perform ear recognition using transfer learning with CNN pretrained on image and face recognition. Finally, we performed two experiments on two unconstrained datasets and reported our results using Rank-based metrics.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsaberto-
Direitos: dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Fonte: o PDF do artigo.-
Palavras-chave: dc.subjectEar biometrics-
Palavras-chave: dc.subjectDeep learning-
Palavras-chave: dc.subjectConvolutional neural networks-
Palavras-chave: dc.subjectTransfer learning-
Título: dc.titleVGGFace-Ear : an extended dataset for unconstrained ear recognition.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.