Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Judice, Sicilia Ferreira Ponce Pasini | - |
Autor(es): dc.creator | Santos, Ítalo Messias Felix | - |
Autor(es): dc.creator | Chagas, Nilo Koscheck das | - |
Autor(es): dc.creator | Loula, Abimael Fernando Dourado | - |
Autor(es): dc.creator | Giraldi, Gilson Antonio | - |
Autor(es): dc.creator | Queiroz, Rafael Alves Bonfim de | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:40:59Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:40:59Z | - |
Data de envio: dc.date.issued | 2022-10-14 | - |
Data de envio: dc.date.issued | 2022-10-14 | - |
Data de envio: dc.date.issued | 2020 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/jspui/handle/123456789/15691 | - |
Fonte completa do material: dc.identifier | https://doi.org/10.5540/tcam.2021.022.02.00241 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1021472 | - |
Descrição: dc.description | Motivados por aplicações recentes em computação gráfica, este trabalho apresenta um estudo teórico e computacional de sistemas de difusão-reação baseados no Gradient Vector Flow (GVF), com foco no comportamento do GVF em relação às singularidades do campo inicial. O estudo teórico parte de uma análise local, independente de condições de fronteira. Em seguida, supõe-se condição de fronteira no infinito e usa-se análise de Fourier para estabelecer condições suficientes para preservação do ponto singular. Finalmente, supõe-se um domínio compacto, com geometria retangular, e analisa-se a preservação de um ponto singular em relação a condição de fronteira usando um método de solução de equações diferenciais parciais (EDPs) baseado em wavelets de Haar. Desenvolvemos também uma implementação de um método direto para a equação estacionaria do GVF baseado em diferenças finitas (DF) para comparar com a solução tradicional do Euler explícito, no que diz respeito a singularidade. E discutida a influência da vorticidade no problema de interesse usando a função de linhas de corrente e equação de Helmholtz. Nos experimentos computacionais, consideramos duas condições de fronteira, dois tipos de singularidades e os três métodos numéricos (Euler explícito, diferenças finitas para a equação estacionaria, e wavelets) para verificar os resultados teóricos obtidos. | - |
Descrição: dc.description | Motivated by recent computer graphics applications, this work presents a theoretical and computational study of diffusion-reaction systems based on Gradient Vector Flow (GVF), focusing on the behavior of GVF concerning the singularities of the initial vector field. The theoretical study starts from a local analysis, regardless of boundary conditions. Then, the boundary condition at infinity is assumed, and Fourier analysis is used to establish sufficient conditions for preserving the singular point. Finally, a compact domain with rectangular geometry is assumed. The preservation of a singular point concerning the boundary condition is analyzed using a method for solving partial differential equations (PDEs) based on Haar wavelets. We have also developed an implementation of a direct method for the GVF stationary equation based on finite differences (DF) to compare with the traditional explicit Euler solution with respect to singularity. The influence of vorticity on the problem of interest is discussed using the streamlines function and the Helmholtz equation. In the computational experiments, we consider two boundary conditions, two types of singularities, and the three numerical methods (explicit Euler, finite differences for the stationary equation, and wavelets) to verify the theoretical results obtained. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | aberto | - |
Direitos: dc.rights | Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License. Fonte: o PDF do artigo. | - |
Palavras-chave: dc.subject | Gradient Vector Flow | - |
Palavras-chave: dc.subject | Singularidades | - |
Palavras-chave: dc.subject | Wavelets de Haar | - |
Título: dc.title | Sistemas do tipo difusao-reação e preservação de pontos singulares. | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: