Data-driven cluster analysis method : a novel outliers detection method in multivariate data.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorDuarte, Anderson Ribeiro-
Autor(es): dc.creatorBarbosa, Josino José-
Autor(es): dc.creatorMartins, Helgem de Souza Ribeiro-
Autor(es): dc.creatorOliveira, Fernando Luiz Pereira de-
Data de aceite: dc.date.accessioned2025-08-21T15:40:03Z-
Data de disponibilização: dc.date.available2025-08-21T15:40:03Z-
Data de envio: dc.date.issued2025-01-14-
Data de envio: dc.date.issued2025-01-14-
Data de envio: dc.date.issued2023-
Fonte completa do material: dc.identifierhttps://www.repositorio.ufop.br/handle/123456789/19536-
Fonte completa do material: dc.identifierhttps://www.tandfonline.com/doi/epdf/10.1080/03610918.2024.2376872?needAccess=true-
Fonte completa do material: dc.identifierhttps://doi.org/10.1080/03610918.2024.2376872-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1021086-
Descrição: dc.descriptionDetection of multivariate outliers is crucial in statistical studies. On the other hand, the statistical applications without identifying possible outliers may present incorrect results. This study proposes a new technique for detecting multivariate outliers based on cluster analysis. The method considers information inherent in the data itself. We compare the methodology with three detection methods that are already widespread. The comparative investigation considers detection techniques based on the Mahalanobis distance. Sensitivity, specificity, and accuracy measures are used to assess the quality of the methods, as well as an analysis of the CPU time required to carry out the procedures. The new technique revealed a notorious superiority over others.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectData-driven-
Palavras-chave: dc.subjectMultivariate outliers-
Palavras-chave: dc.subjectCluster analysis-
Palavras-chave: dc.subjectBayesian information criterion-
Palavras-chave: dc.subjectAccuracy-
Título: dc.titleData-driven cluster analysis method : a novel outliers detection method in multivariate data.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.