On a singular minimizing problem.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorErcole, Grey-
Autor(es): dc.creatorPereira, Gilberto de Assis-
Data de aceite: dc.date.accessioned2025-08-21T15:39:34Z-
Data de disponibilização: dc.date.available2025-08-21T15:39:34Z-
Data de envio: dc.date.issued2023-02-06-
Data de envio: dc.date.issued2023-02-06-
Data de envio: dc.date.issued2018-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/16136-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s11854-018-0040-0-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/j.jmaa.2022.126225-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1020877-
Descrição: dc.descriptionFor each q ∈ (0, 1) let λq(Ω) := inf k∇vk p Lp(Ω) : v ∈ W1,p 0 (Ω) and Z Ω |v| q dx = 1, where p > 1 and Ω is a bounded and smooth domain of R N , N ≥ 2. We first show that 0 < μ(Ω) := lim q→0+λq(Ω)|Ω| p q < ∞, where |Ω| = R Ω dx. Then, we prove that μ(Ω) = min (k∇vk p Lp(Ω) : v ∈ W1,p 0 (Ω) and lim q→0+ 1 |Ω| Z Ω |v| q dx 1 q = 1) and that μ(Ω) is reached by a function u ∈ W1,p 0 (Ω), which is positive in Ω, belongs to C 0,α(Ω), for some α ∈ (0, 1), and satisfies − div(|∇u| p−2 ∇u) = μ(Ω)|Ω| −1 u −1 in Ω, and Z Ω log udx = 0. We also show that μ(Ω)−1 is the best constant C in the following log-Sobolev type inequality exp 1 |Ω| Z Ω log |v| p dx ≤ C k∇vk p Lp(Ω) , v ∈ W1,p 0 (Ω) and that this inequality becomes an equality if, and only if, v is a scalar multiple of u and C = μ(Ω)−1.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectAsymptotic behavior-
Palavras-chave: dc.subjectlog-Sobolev inequality-
Palavras-chave: dc.subjectp-Laplacian-
Palavras-chave: dc.subjectSingular problem-
Título: dc.titleOn a singular minimizing problem.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.