Local search with groups of step sizes.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorCosta, Rodolfo Ayala Lopes-
Autor(es): dc.creatorFreitas, Alan Robert Resende de-
Autor(es): dc.creatorSilva, Rodrigo César Pedrosa-
Data de aceite: dc.date.accessioned2025-08-21T15:39:13Z-
Data de disponibilização: dc.date.available2025-08-21T15:39:13Z-
Data de envio: dc.date.issued2022-02-06-
Data de envio: dc.date.issued2022-02-06-
Data de envio: dc.date.issued2020-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/14444-
Fonte completa do material: dc.identifierhttps://www.sciencedirect.com/science/article/abs/pii/S016763772100050X-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/j.orl.2021.03.009-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1020711-
Descrição: dc.descriptionLocal search methods for continuous optimization problems tend to be sensitive to the choice of step sizes in their search directions. This paper presents the Local Search with Groups of Step Sizes (LSGSS) method, a derivative-free method that reactively updates groups of promising step sizes for each problem coordinate. The experiments demonstrate LSGSS could find the best solutions for each large-scale benchmark problem when compared to classical methods.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectContinuous optimization-
Palavras-chave: dc.subjectDerivative-free local search-
Título: dc.titleLocal search with groups of step sizes.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.