Asymptotic behavior of the p-torsion functions as p goes to 1.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBueno, Hamilton Prado-
Autor(es): dc.creatorErcole, Grey-
Autor(es): dc.creatorMacedo, Shirley da Silva-
Data de aceite: dc.date.accessioned2025-08-21T15:36:49Z-
Data de disponibilização: dc.date.available2025-08-21T15:36:49Z-
Data de envio: dc.date.issued2018-01-18-
Data de envio: dc.date.issued2018-01-18-
Data de envio: dc.date.issued2016-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/handle/123456789/9261-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s00013-016-0922-2-
Fonte completa do material: dc.identifierhttps://doi.org/10.1007/s00013-016-0922-2-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1019745-
Descrição: dc.descriptionLet Ω be a Lipschitz bounded domain of RN, N ≥ 2, and let up ∈ W1,p 0 (Ω) denote the p-torsion function of Ω, p > 1. It is observed that the value 1 for the Cheeger constant h(Ω) is threshold with respect to the asymptotic behavior of up, as p → 1+, in the following sense: when h(Ω) > 1, one has limp→1+ up L∞(Ω) = 0, and when h(Ω) < 1, one has limp→1+ up L∞(Ω) = ∞. In the case h(Ω) = 1, it is proved that lim supp→1+ up L∞(Ω) < ∞. For a radial annulus Ωa,b, with inner radius a and outer radius b, it is proved that limp→1+ up L∞(Ωa,b) = 0 when h(Ωa,b) = 1.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectAsymptotic behavior-
Palavras-chave: dc.subjectCheeger constant-
Título: dc.titleAsymptotic behavior of the p-torsion functions as p goes to 1.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.