Results on a strongly coupled, asymptotically linear pseudo-relativistic Schrödinger system : ground state, radial symmetry and Hölder regularity.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBueno, Hamilton Prado-
Autor(es): dc.creatorMamani, Guido Gutierrez-
Autor(es): dc.creatorMedeiros, Aldo Henrique de Souza-
Autor(es): dc.creatorPereira, Gilberto de Assis-
Data de aceite: dc.date.accessioned2025-08-21T15:35:06Z-
Data de disponibilização: dc.date.available2025-08-21T15:35:06Z-
Data de envio: dc.date.issued2023-08-18-
Data de envio: dc.date.issued2023-08-18-
Data de envio: dc.date.issued2021-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/17267-
Fonte completa do material: dc.identifierhttps://www.sciencedirect.com/science/article/pii/S0362546X22000839-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/j.na.2022.112916-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1018980-
Descrição: dc.descriptionIn this paper we consider the asymptotically linear, strongly coupled nonlinear system ⎧ ⎪⎨ ⎪⎩ √ −∆ + m2 u = u 2 + v 2 1 + s(u2 + v 2) u + λv, √ −∆ + m2 v = u 2 + v 2 1 + s(u2 + v 2) v + λu, where m > 0, 0 < λ < m and 0 < s < 1/(λ + m) are constants. By applying the Nehari–Pohozaev manifold, we prove that our system has a ground state solution. We also prove that solutions of this system are radially symmetric and belong to C0,μ(RN ) for some 0 < μ < 1 and each N > 1.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectPseudo-relativistic Schrödinger operator-
Palavras-chave: dc.subjectAsymptotic linear system-
Palavras-chave: dc.subjectNehari–Pohozaev manifold-
Título: dc.titleResults on a strongly coupled, asymptotically linear pseudo-relativistic Schrödinger system : ground state, radial symmetry and Hölder regularity.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.