Hierarchical segmentation from a non-increasing edge observation attribute.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorCayllahua Cahuina, Edward Jorge Yuri-
Autor(es): dc.creatorCousty, Jean-
Autor(es): dc.creatorGuimarães, Silvio Jamil Ferzoli-
Autor(es): dc.creatorKenmochi, Yukiko-
Autor(es): dc.creatorCámara Chávez, Guillermo-
Autor(es): dc.creatorAraújo, Arnaldo de Albuquerque-
Data de aceite: dc.date.accessioned2025-08-21T15:34:58Z-
Data de disponibilização: dc.date.available2025-08-21T15:34:58Z-
Data de envio: dc.date.issued2022-02-06-
Data de envio: dc.date.issued2022-02-06-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/14455-
Fonte completa do material: dc.identifierhttps://www.sciencedirect.com/science/article/abs/pii/S0167865519303770?via%3Dihub-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/j.patrec.2019.12.014-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1018911-
Descrição: dc.descriptionHierarchical image segmentation provides region-oriented scale-spaces: sets of image segmentations at different detail levels in which the segmentations at finer levels are nested with respect to those at coarser levels. Guimaraes ˜ et al. proposed a hierarchical graph-based image segmentation (HGB) method based on the Felzenszwalb-Huttenlocher dissimilarity. It computes, for each edge of a graph, the minimum scale in a hierarchy at which two regions linked by this edge should be merged according to the dissimilarity. We provide an explicit definition of the (edge-) observation attribute and Boolean criterion which are at the basis of this method and show that they are not increasing. Then, we propose an algorithm to compute all the scales for which the criterion holds true. Finally, we propose new methods to regularize the observation attribute and criterion and to set up the observation scale value of each edge of a graph, following the current trend in mathematical morphology to study criteria which are not increasing on a hierarchy. Assessments on Pascal VOC 2010 and 2012 show that these strategies lead to better segmentation results than the ones obtained with the original HGB method.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Título: dc.titleHierarchical segmentation from a non-increasing edge observation attribute.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.