Using zeros of the canonical partition function map to detect signatures of a Berezinskii–Kosterlitz–Thouless transition.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorRocha, Julio Cesar Siqueira-
Autor(es): dc.creatorMól, Lucas Alvares da Silva-
Autor(es): dc.creatorCosta, Bismarck Vaz da-
Data de aceite: dc.date.accessioned2025-08-21T15:34:47Z-
Data de disponibilização: dc.date.available2025-08-21T15:34:47Z-
Data de envio: dc.date.issued2018-02-01-
Data de envio: dc.date.issued2018-02-01-
Data de envio: dc.date.issued2016-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/handle/123456789/9412-
Fonte completa do material: dc.identifierhttps://www.sciencedirect.com/science/article/pii/S0010465516302466-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/j.cpc.2016.08.016-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1018820-
Descrição: dc.descriptionUsing the two dimensional XY − (S(O(3))) model as a test case, we show that analysis of the Fisher zeros of the canonical partition function can provide signatures of a transition in the Berezinskii– Kosterlitz–Thouless (BKT) universality class. Studying the internal border of zeros in the complex temperature plane, we found a scenario in complete agreement with theoretical expectations which allow one to uniquely classify a phase transition as in the BKT class of universality. We obtain TBKT in excellent accordance with previous results. A careful analysis of the behavior of the zeros for both regions Re(T ) ≤ TBKT and Re(T ) > TBKT in the thermodynamic limit shows that Im(T ) goes to zero in the former case and is finite in the last one.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectPhase transitions - general studies-
Palavras-chave: dc.subjectMonte Carlo methods-
Palavras-chave: dc.subjectClassical spin models-
Título: dc.titleUsing zeros of the canonical partition function map to detect signatures of a Berezinskii–Kosterlitz–Thouless transition.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.