Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Ayache, Naim Khalil | - |
Autor(es): dc.creator | Santos, Allan Erlilikhman Medeiros | - |
Autor(es): dc.creator | Nascimento, Arthur Emílio Alves | - |
Autor(es): dc.creator | Castro, Silvania Alves Braga de | - |
Autor(es): dc.creator | Silva, Denise de Fátima Santos da | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:34:19Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:34:19Z | - |
Data de envio: dc.date.issued | 2024-10-04 | - |
Data de envio: dc.date.issued | 2024-10-04 | - |
Data de envio: dc.date.issued | 2022 | - |
Fonte completa do material: dc.identifier | https://www.repositorio.ufop.br/handle/123456789/18784 | - |
Fonte completa do material: dc.identifier | https://doi.org/10.15628/holos.2023.15200 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1018635 | - |
Descrição: dc.description | Os processos de amostragem na exploração mineral muitas vezes resultam em áreas preferencialmente amostradas, com a formação de agrupamentos, que podem surgir devido a alguns fatores, tais como condições de acessibilidade, valores de atributos e a estratégia de amostragem. Os agrupamentos afetam a inferência estatística da área. O objetivo deste artigo é propor uma nova abordagem para métodos de desagrupamento usando as redes de Kohonen, Self-Organizing Maps (SOM). As SOMs é um tipo de rede neural artificial usada para classificação não supervisionada. A metodologia atribui a cada amostra um peso para calcular a média desagrupada. A atribuição de peso para cada amostra em uma área é inversamente proporcional à área densamente amostrada. A média desagrupada é dada pela soma da multiplicação do peso com o valor do atributo de cada amostra. Portanto, a lógica de atribuição de pesos é semelhante ao método Cell Declustering, porém as SOMs identificam as áreas com margens não lineares, ao contrário do método Cell Declustering. Um estudo de caso é apresentado, usando o conjunto de dados de Walker Lake. A presente pesquisa não pretende substituir os métodos clássicos de desagrupamento, mas sim apresentar uma nova abordagem para um problema rotineiro na avaliação de reservas. Embora a matemática da técnica aplicada seja de fato complexa, os resultados podem ser promissores. | - |
Descrição: dc.description | Sampling processes in mineral exploration often result in preferentially sampled areas, with the formation of clustering. Some factors can cause areas to be preferentially sampled, accessibility conditions, attribute values, and the sampling strategy. Clustering impacts statistical inference of area. The objective of the present paper is to propose a new approach to declustering methods using Kohonen network, Self-Organizing Maps (SOM). SOM are a type of artificial neural network used for unsupervised classification. The methodology assigns each sample a weight to calculate the declustered mean. The assignment of weight to each sample in an area is inversely proportional to the densely sampled in area. The declustered mean is given by the sum of the weight multiplication with the attribute value of each sample. Therefore, the logic of assigning weights is similar to Cell Declustering method, but the delimitation of the densified areas is different. SOM identifies areas with non-linear margins, unlike the Cell Declustering method. A case study is presented, using the Walker Lake data set. The present research is not intended to replace classical declustering methods, but rather to present a new approach to a routine problem in reserve evaluation. Although the mathematics of the applied technique is indeed complex, the results can be promising. | - |
Formato: dc.format | application/pdf | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | aberto | - |
Direitos: dc.rights | Este é um artigo publicado em acesso aberto sob uma licença Creative Commons. Fonte: PDF do artigo. | - |
Palavras-chave: dc.subject | Redes de Kohonen | - |
Palavras-chave: dc.subject | Métodos de desagrupamento | - |
Palavras-chave: dc.subject | Amostragem preferencial | - |
Título: dc.title | Mapas auto-organizáveis aplicados ao desagrupamento em amostragem preferencial. | - |
Título: dc.title | Self-organizing maps applied to declustering in preferential sampling. | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: