Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Moreira, Gladston Juliano Prates | - |
Autor(es): dc.contributor | Moreira, Gladston Juliano Prates | - |
Autor(es): dc.contributor | Bianchi, Andrea Gomes Campos | - |
Autor(es): dc.contributor | Gomes, David Menotti | - |
Autor(es): dc.contributor | Coelho, Vitor Nazário | - |
Autor(es): dc.creator | Schons, Thiago | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:33:57Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:33:57Z | - |
Data de envio: dc.date.issued | 2018-04-23 | - |
Data de envio: dc.date.issued | 2018-04-23 | - |
Data de envio: dc.date.issued | 2018 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/handle/123456789/9850 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1018486 | - |
Descrição: dc.description | Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto. | - |
Descrição: dc.description | Sistemas biométricos encontram-se em grande expansão pela necessidade de segurança em todas as esferas da sociedade, nesse contexto sistemas baseados em eletroencefalograma (EEG) vem despertando grande interesse entre os pesquisadores. No entanto, essa modalidade biométrica é suscetível a ruídos na captação de sinais e tem problemas de escala, acurácia e captação em ambientes não controlados, representando um grande desafio. Métodos baseados em redes neurais de convolução vêm sendo explorados na literatura para processamento de sinais e resultados expressivos para sua classificação vem sendo obtidos. Nesse cenário, o método proposto neste trabalho é baseado em Rede Neural de Convolução (CNN) para verificação biométrica e avaliação em uma base de dados da Physionet. Uma técnica de data augmentation baseada em sobreposição dos sinais é proposta para ampliar a quantidade de dados de treinamento da rede de aprendizagem em profundidade. A redução do equal error rate (EER) de 4,5% para 0,19% nos testes baseline em comparação com a literatura mostram que o método é um caminho promissor na representação de sinais cerebrais para biometria. | - |
Descrição: dc.description | Biometric systems are in great expansion by the need for security in all spheres of society, in this context systems based on electroencephalogram (EEG) has aroused great interest among researchers. However, this biometric modality is susceptible to noise in signal capture and has problems of scale, accuracy and capture in uncontrolled environments, representing a great challenge. Methods based on convolution neural networks (CNN) have been explored in the literature for signal processing and expressive results for their classication have been obtained. In this scenario, the proposed method is based on CNN for biometric verication and evaluation in a Physionet database. A data augmentation technique based on overlapping signals is proposed to increase the amount of training data for the deep learning network. The reduction of the equal error rate (EER) from 4.5% to 0.19% in the baseline tests compared to the literature shows that the method is a promising path in the representation of brain signals for biometrics. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | aberto | - |
Direitos: dc.rights | Autorização concedida ao Repositório Institucional da UFOP pelo autor(a), 11/04/2018, com as seguintes condições: disponível sob Licença Creative Commons 4.0, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação. | - |
Palavras-chave: dc.subject | Biometria | - |
Palavras-chave: dc.subject | Rede neural | - |
Palavras-chave: dc.subject | Eletroencefalograma | - |
Palavras-chave: dc.subject | Rede de convolução | - |
Título: dc.title | Rede de convolução para sistema biométrico baseado em EEG. | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: