Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Silva, Ivair Ramos | - |
Autor(es): dc.creator | Marques, Reinaldo Antônio Gomes | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:31:43Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:31:43Z | - |
Data de envio: dc.date.issued | 2019-06-06 | - |
Data de envio: dc.date.issued | 2019-06-06 | - |
Data de envio: dc.date.issued | 2019 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/handle/123456789/11455 | - |
Fonte completa do material: dc.identifier | https://www.sciencedirect.com/science/article/pii/S0377042718306964 | - |
Fonte completa do material: dc.identifier | https://doi.org/10.1016/j.cam.2018.11.016 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1017503 | - |
Descrição: dc.description | Bayesian hypothesis testing procedures are constructed by means of test statistics which are functions of the posterior distribution. Usually, the whole sample vector is selected to form the sufficient empirical part of the posterior distribution. But, in certain problems, one may prefer to use well-established one-dimensional sufficient statistics in place of the sample vector. This paper introduces a Bayesian Monte Carlo procedure specially designed for such cases. It is shown that the performance of this new approach is arbitrarily close to the exact Bayesian test. In addition, for arbitrary desired precisions, we develop a theoretical rule of thumb for choosing the minimum number m0 of Monte Carlo simulations. Surprisingly, m0 does not depend on the shape of loss/cost functions when those are used to compound the test statistic. The method is illustrated for testing mean vectors in highdimension and for detecting spatial clusters of diseases in aggregated maps. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Direitos: dc.rights | restrito | - |
Palavras-chave: dc.subject | Bayes factor | - |
Palavras-chave: dc.subject | Expected loss | - |
Palavras-chave: dc.subject | Exact test | - |
Título: dc.title | Bayesian Monte Carlo testing with one-dimensional measures of evidence. | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: