Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Pessin, Gustavo | - |
Autor(es): dc.contributor | Bianchi, Andrea Gomes Campos | - |
Autor(es): dc.contributor | Pessin, Gustavo | - |
Autor(es): dc.contributor | Bianchi, Andrea Gomes Campos | - |
Autor(es): dc.contributor | Coelho, Bruno Nazário | - |
Autor(es): dc.contributor | Rocha Filho, Geraldo Pereira | - |
Autor(es): dc.contributor | Rocha, Filipe Augusto Santos | - |
Autor(es): dc.creator | Ericeira, Daniel Rodrigues | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:31:06Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:31:06Z | - |
Data de envio: dc.date.issued | 2020-08-07 | - |
Data de envio: dc.date.issued | 2020-08-07 | - |
Data de envio: dc.date.issued | 2019 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/handle/123456789/12554 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1017230 | - |
Descrição: dc.description | Programa de Pós-Graduação em Instrumentação, Controle e Automação de Processos de Mineração. Departamento de Engenharia de Controle e Automação, Escola de Minas, Universidade Federal de Ouro Preto. | - |
Descrição: dc.description | Transportadores de correia são os principais equipamentos que compõem a logística de um terminal portuário. As partes rolantes do transportador de correia podem falhar principalmente devido a rolos danificados, que podem causar avarias graves à planta, como rasgar a correia e causar incêndios. Atualmente, a proteção do transportador é feita por sensores que indicam uma anormalidade já ocorrida, ou com inspeção humana que utiliza experiência prática em busca de sinais visuais, sonoros e de temperatura excessiva que indiquem falhas iminentes. Com objetivo de auxiliar o atual sistema corretivo e de inspeção local com análise de dados para detectar falhas mecânicas iminentes, é proposto um modelo de classificação de defeitos em rolos. Foram realizadas gravações de ultrassom em rolos sem ruídos perceptíveis, classificados como “nãodefeituosos” e em rolos que apresentavam ruídos característicos de falhas já perceptíveis, classificados como “defeituosos”. A base de dados montada foi utilizada para treinamento e teste de desempenho de algoritmos de aprendizado de máquina do tipo Random Forest e Multilayer Perceptron. Foram elaborados quatro tipos de experimentos para teste, dois usando dados no domínio do tempo e dois usando dados no domínio da frequência, com atributos estatísticos diferentes. Os resultados obtidos em testes de classificação mostraram que existe um padrão característico na faixa de ultrassons que difere os rolos não-defeituosos de defeituosos, conforme pré-avaliados com métodos tradicionais de inspeção humana. No melhor caso, o experimento usando média móvel dos dados no domínio da frequência apresentou média de classificação correta de rolos de 83,68%, tendo o melhor resultado com taxa de acerto de 90%. | - |
Descrição: dc.description | Conveyor belts are the main class of machinery that compose the logistics of a port terminal. The rolling components of the conveyor belt may fail mainly due to damaged idlers, which may cause serious industrial breakdown, such as belt ripping or fires of major proportions. Nowadays, the equipment protection is done by a set of sensors that indicate an already existing abnormality, or by human inspection applying empirical experience in search of visual, sound or temperature signatures of imminent failure. Aiming to aid the current corrective system and local diagnostic inspection with data analysis to detect approaching mechanical failures, a model for classifying defects on the conveyor’s idlers is proposed. Ultrasound recordings were conducted on idlers that didn’t present any perceptible abnormalities, labeled as non-defective, and on idlers that displayed typical failure noise, labeled as defectives. The dataset collected was used for training and testing of Random Forest and Multilayer Perceptron machine learning algorithms. Four types of experiments were devised to test the methodology, two of them using time domain data and two of them using frequency domain data, with different statistical attributes. The results achieved in different classification experiments showed that there is a distinctive pattern on the ultrasound spectrum that differs non-defective from defective idlers, as pre-evaluated by traditional methods of human inspection. In the best case, the experiment that used moving average on the frequency domain data presented an average of 83,68% of correctly classified idlers, having as best result a success rate of 90%. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | aberto | - |
Direitos: dc.rights | Autorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 27/07/2020 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho desde que sejam citados o autor e o licenciante. Não permite a adaptação. | - |
Palavras-chave: dc.subject | Correias transportadoras | - |
Palavras-chave: dc.subject | Aprendizado do computador | - |
Palavras-chave: dc.subject | Ultrassom | - |
Título: dc.title | Detecção automática de defeitos em rolos de transportadores de correia utilizando sensoriamento ultrassônico. | - |
Título: dc.title | An ultrasonic sensing system for automatic defect detection on conveyor belts idlers. | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: