Chemical fingerprint of non‐aged artisanal sugarcane spirits using kohonen artifcial neural network.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorCaetano, Daniela-
Autor(es): dc.creatorLima, Clara Mariana Gonçalves-
Autor(es): dc.creatorSanson, Ananda Lima-
Autor(es): dc.creatorSilva, Débora Faria-
Autor(es): dc.creatorHassemer, Guilherme de Souza-
Autor(es): dc.creatorVerruck, Silvani-
Autor(es): dc.creatorGregório, Sandra Regina-
Autor(es): dc.creatorSilva, Gilmare Antônia da-
Autor(es): dc.creatorAfonso, Robson José de Cássia Franco-
Autor(es): dc.creatorCoutrim, Maurício Xavier-
Autor(es): dc.creatorBatiha, Gaber El‐Saber-
Autor(es): dc.creatorGandara, Jesus Simal-
Data de aceite: dc.date.accessioned2025-08-21T15:30:31Z-
Data de disponibilização: dc.date.available2025-08-21T15:30:31Z-
Data de envio: dc.date.issued2023-05-24-
Data de envio: dc.date.issued2023-05-24-
Data de envio: dc.date.issued2021-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/16654-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s12161-021-02160-8-
Fonte completa do material: dc.identifierhttps://doi.org/10.1007/s12161-021-02160-8-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1016988-
Descrição: dc.descriptionThis study focuses on the determination of the chemical profle of 24 non-aged Brazilian artisanal sugarcane spirits (cachaça) samples through chromatographic quantifcation and chemometric treatment via principal component analysis (PCA) and Kohonen’s neural network. In total, forty-seven (47) chemical compounds were identifed in the samples of non-aged artisanal cachaça, in addition to determining alcohol content, volatile acidity, and copper. For the PCA of the chemical compounds’ profle, it could be observed that the samples were grouped into seven groups. On the other hand, the variables’ bearings were grouped together, making it difcult to separate the components in relation to the sample groups and reducing the chances of obtaining all the necessary information. However, by using a Kohonen’s neural network, samples were grouped into eight groups. This tool proved to be more accurate in the groups’ formation. Among the chemical classes of the com- pounds observed, esters stood out, followed by alcohols, acids, aldehydes, ketones, phenol, and copper. The abundance of esters in these samples may suggest that these compounds would be part of the regional standard for cachaças produced in the region of Salinas, Minas Gerais.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectTraceability-
Palavras-chave: dc.subjectAuthenticity-
Palavras-chave: dc.subjectSelf-organizing maps-
Título: dc.titleChemical fingerprint of non‐aged artisanal sugarcane spirits using kohonen artifcial neural network.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.