Asymptotic behavior of ground states of generalized pseudo-relativistic Hartree equation.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBelchior, Pedro-
Autor(es): dc.creatorBueno, Hamilton Prado-
Autor(es): dc.creatorMiyagaki, Olimpio Hiroshi-
Autor(es): dc.creatorPereira, Gilberto de Assis-
Data de aceite: dc.date.accessioned2025-08-21T15:27:44Z-
Data de disponibilização: dc.date.available2025-08-21T15:27:44Z-
Data de envio: dc.date.issued2023-02-06-
Data de envio: dc.date.issued2023-02-06-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/16131-
Fonte completa do material: dc.identifierhttps://content.iospress.com/articles/asymptotic-analysis/asy191561-
Fonte completa do material: dc.identifierhttps://doi.org/10.3233/ASY-191561-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1015617-
Descrição: dc.descriptionAbstract. With appropriate hypotheses on the nonlinearity f , we prove the existence of a ground state solution u for the problem − + m2u + V u = W ∗ F (u) f (u) in RN, where V is a bounded potential, not necessarily continuous, and F the primitive of f . We also show that any of this problem is a classical solution. Furthermore, we prove that the ground state solution has exponential decay.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectVariational methods-
Palavras-chave: dc.subjectExponential decay-
Palavras-chave: dc.subjectFractional laplacian-
Título: dc.titleAsymptotic behavior of ground states of generalized pseudo-relativistic Hartree equation.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.