Computing the best constant in the Sobolev inequality for a ball.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorErcole, Grey-
Autor(es): dc.creatorEspírito Santo, Júlio César do-
Autor(es): dc.creatorMartins, Eder Marinho-
Data de aceite: dc.date.accessioned2025-08-21T15:27:08Z-
Data de disponibilização: dc.date.available2025-08-21T15:27:08Z-
Data de envio: dc.date.issued2018-11-22-
Data de envio: dc.date.issued2018-11-22-
Data de envio: dc.date.issued2017-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/handle/123456789/10560-
Fonte completa do material: dc.identifierhttps://www.tandfonline.com/doi/full/10.1080/00036811.2017.1422723-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1015236-
Descrição: dc.descriptionLet B1 be the unit ball of R N , N ≥ 2, and let p ? = N p/(N − p) if 1 < p < N and p ? = ∞ if p ≥ N. For each q ∈ [1, p? ) let wq ∈ W1,p 0 (B1) be the positive function such that kwqkLq(B1) = 1 and λq(B1) := min ( k∇uk p Lp(B1) kuk p Lq(B1) : 0 6≡ u ∈ W1,p 0 (B1) ) = k∇wqk p Lp(B1) . In this paper we develop an iterative method for obtaining the pair (λq(B1), wq), starting from w1. Since w1 is explicitly known, the method is computationally practical, as our numerical tests show. 2010 Mathematics Subject Classification. 34L16; 35J25; 65N25 Keywords: Best Sobolev constant; extremal functions; inverse iteration method; p-Laplacian.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Título: dc.titleComputing the best constant in the Sobolev inequality for a ball.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.