Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Francisco Neto, Antônio | - |
Autor(es): dc.creator | O'Carroll, Michael Louis | - |
Autor(es): dc.creator | Veiga, Paulo Afonso Faria da | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:25:51Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:25:51Z | - |
Data de envio: dc.date.issued | 2017-09-18 | - |
Data de envio: dc.date.issued | 2017-09-18 | - |
Data de envio: dc.date.issued | 2008 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/handle/123456789/8738 | - |
Fonte completa do material: dc.identifier | http://aip.scitation.org/doi/full/10.1063/1.2903751 | - |
Fonte completa do material: dc.identifier | https://doi.org/10.1063/1.2903751 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1014453 | - |
Descrição: dc.description | We show the existence of all the 36 eightfold way mesons and determine their masses and dispersion curves exactly, from dynamical first principles such as directly from the quark-fluon dynamics. We also give a proof of confinement below the two-meson energy threshold. For this purpose, we consider an imaginary time functional integral representation of a 3 1 dimensional lattice QCD model with Wilson action, SU 3 f global and SU 3 c local symmetries. We work in the strong coupling regime, such that the hopping parameter 0 is small and much larger than the plaquette coupling 1/g0 2 0 1 . In the quantum mechanical physical Hilbert space H, a Feynman-Kac type representation for the two-meson correlation and its spectral representation are used to establish an exact rigorous connection between the complex momentum singularities of the two-meson truncated correlation and the energy-momentum spectrum of the model. The total spin operator J and its z-component Jz are defined by using /2 rotations about the spatial coordinate axes, and agree with the infinitesimal generators of the continuum for improper zero-momentum meson states. The mesons admit a labelling in terms of the quantum numbers of total isospin I, the third component I3 of total isospin, the z-component Jz of total spin and quadratic Casimir C2 for SU 3 f. With this labelling, the mesons can be organized into two sets of states, distinguished by the total spin J. These two sets are identified with the SU 3 f nonet of pseudo-scalar mesons (J=0 and the three nonets of vector mesons J=1,Jz= 1,0 . Within each nonet a further decomposition can be made using C2 to obtain the singlet state C2=0 and the eight members of the octet C2=3 . By casting the problem of determination of the meson masses and dispersion curves into the framework of the the anaytic implicit function theorem, all the masses m , are found exactly and are given by convergent expansions in the parameters and . The masses are all of the form m , =0 m =−2ln −3 2 /2+ 4r with r 0 0 and r real analytic; for 0,m , +2ln is jointly analytic in and . The masses of the vector mesons are independent of Jz and are all equal within each octet. All isospin singlet masses are also equal for the vector mesons. For each nonet and =0, up to and including O 4 , the masses of the octet and the singlet are found to be equal. But there is a pseudoscalar-vector meson mass splitting given by 2 4+O 6 and the splitting persists for 0. For =0, the dispersion curves are all of the form w p =−2 ln −3 2 /2+ 1 4 2 j=1 3 2 1−cos pj + 4r , p , with r , p const. For the pseudoscalar mesons, r , p is jointly analytic in and pj, for and Im pj small. We use some machinery from constructive field theory, such as the decoupling of hyperplane method, in order to reveal the gauge-invariant eightfold way meson states and a correlation subtraction method to extend our spectral results to all He, the subspace of H generated by vectors with an even number of Grassmann variables, up to near the two-meson energy threshold of −4 ln . Combining this result with a previously similar result for the baryon sector of the eightfold way, we show that the only spectrum in all H He Ho Ho being the odd subspace below −4 ln is given by the eightfold way mesons and baryons. Hence, we prove confinement up to near this energy threshold. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Direitos: dc.rights | restrito | - |
Título: dc.title | Mesonic eightfold way from dynamics and confinement in strongly coupled lattice quantum chromodynamics. | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: