
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Ferreira, Anderson Almeida | - |
| Autor(es): dc.contributor | Ferreira, Anderson Almeida | - |
| Autor(es): dc.contributor | Pereira Junior, Álvaro Rodrigues | - |
| Autor(es): dc.contributor | Rodrigues, Lívia Couto Ruback | - |
| Autor(es): dc.creator | Pereira, Ítalo Magno | - |
| Data de aceite: dc.date.accessioned | 2025-08-21T15:23:06Z | - |
| Data de disponibilização: dc.date.available | 2025-08-21T15:23:06Z | - |
| Data de envio: dc.date.issued | 2019-11-28 | - |
| Data de envio: dc.date.issued | 2019-11-28 | - |
| Data de envio: dc.date.issued | 2019 | - |
| Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/handle/123456789/11827 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1012725 | - |
| Descrição: dc.description | Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto. | - |
| Descrição: dc.description | A época atual está sendo vista como uma era de sobrecarga de informação, uma vez que mais dados são produzidos do que humanos podem processar. Este fato implica na melhoria constante de sistemas de recuperação e tratamento de informação. Inserido neste contexto, os sistemas de recomendação são ferramentas importantes aos usuários, por sugerir itens que possam ser interessantes. No entanto, os sistemas de recomendação baseados em filtragem colaborativa sofrem com o problema conhecido como cold start ou falta de dados iniciais. A opção para contornar esse problema é explorar outras fontes de dados, como a Linked Open Data (LOD), para enriquecer os dados. Contudo, muitas soluções baseadas na LOD não fazem uso dos relacionamentos semânticos e, quando o fazem, não ponderam corretamente seus relacionamentos e, assim, não exploram o seu potencial. Este trabalho visa apresentar uma abordagem para explorar os relacionamentos semânticos da Linked Open Data, por meio da descoberta de características relevantes e ponderação de tais características sem intervenção de um especialista de domínio de aplicação. Para avaliar a proposta, foram realizados experimentos em dois domínios de aplicação, domínio de filmes e museus. Os resultados mostraram-se competitivos comparados a outras abordagens, onde a seleção de propriedades relevantes é feita manualmente. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Direitos: dc.rights | aberto | - |
| Direitos: dc.rights | Autorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 21/11/2019 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho desde que sejam citados o autor e o licenciante. Não permite a adaptação. | - |
| Palavras-chave: dc.subject | Dados vinculados | - |
| Palavras-chave: dc.subject | Ontologia | - |
| Palavras-chave: dc.subject | Correlação | - |
| Título: dc.title | Uma abordagem para estimar a similaridade item-item baseada nos relacionamentos semânticos da Linked Open Data. | - |
| Tipo de arquivo: dc.type | livro digital | - |
| Aparece nas coleções: | Repositório Institucional - UFOP | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: