Bringing deep learning to the fields and forests : leaf reconstruction and shape estimation.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorSilva, Mateus Coelho-
Autor(es): dc.creatorBianchi, Andrea Gomes Campos-
Autor(es): dc.creatorRibeiro, Sérvio Pontes-
Autor(es): dc.creatorOliveira, Ricardo Augusto Rabelo-
Data de aceite: dc.date.accessioned2025-08-21T15:22:44Z-
Data de disponibilização: dc.date.available2025-08-21T15:22:44Z-
Data de envio: dc.date.issued2023-07-21-
Data de envio: dc.date.issued2023-07-21-
Data de envio: dc.date.issued2021-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/17031-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s42979-022-01082-4-
Fonte completa do material: dc.identifierhttps://doi.org/10.1007/s42979-022-01082-4-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1012498-
Descrição: dc.descriptionOne of the indicators of ecosystem health is leaf health. Among the leading indicators studied in leaves, herbivory and dis- ease presence are relevant indicators of ecosystem behavior. Several methods in the literature study leaf damage estimation processes. Most of the previous studies display the usage of methods that display limited generalism. In previous work, we displayed the possibility of using conditional GANs to estimate the leaf damage. Our results displayed that this approach increases the generalism of the solution by seeking to reconstruct the original leaf shape. In this paper, we present a deeper discussion on the results and a previous discussion on how to transport this method to the forests. We present the whole method used for approximating the leaf shape, assessing further results that display the method’s robustness. Finally, we also show preliminary methods that can be used to embed this method in edge computing hardware.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsrestrito-
Palavras-chave: dc.subjectConditional GAN-
Palavras-chave: dc.subjectLeaf shape estimation-
Palavras-chave: dc.subjectDefoliation estimation-
Título: dc.titleBringing deep learning to the fields and forests : leaf reconstruction and shape estimation.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.