A hierarchical feature-based methodology to perform cervical cancer classification.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorDiniz, Débora Nasser-
Autor(es): dc.creatorRezende, Mariana Trevisan-
Autor(es): dc.creatorBianchi, Andrea Gomes Campos-
Autor(es): dc.creatorCarneiro, Cláudia Martins-
Autor(es): dc.creatorUshizima, Daniela Mayumi-
Autor(es): dc.creatorMedeiros, Fátima Neusizeuma Sombra de-
Autor(es): dc.creatorSouza, Marcone Jamilson Freitas-
Data de aceite: dc.date.accessioned2025-08-21T15:16:14Z-
Data de disponibilização: dc.date.available2025-08-21T15:16:14Z-
Data de envio: dc.date.issued2022-02-14-
Data de envio: dc.date.issued2022-02-14-
Data de envio: dc.date.issued2020-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/jspui/handle/123456789/14486-
Fonte completa do material: dc.identifierhttps://doi.org/10.3390/app11094091-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1008627-
Descrição: dc.descriptionPrevention of cervical cancer could be performed using Pap smear image analysis. This test screens pre-neoplastic changes in the cervical epithelial cells; accurate screening can reduce deaths caused by the disease. Pap smear test analysis is exhaustive and repetitive work performed visually by a cytopathologist. This article proposes a workload-reducing algorithm for cervical cancer detection based on analysis of cell nuclei features within Pap smear images. We investigate eight traditional machine learning methods to perform a hierarchical classification. We propose a hierarchical classification methodology for computer-aided screening of cell lesions, which can recommend fields of view from the microscopy image based on the nuclei detection of cervical cells. We evaluate the performance of several algorithms against the Herlev and CRIC databases, using a varying number of classes during image classification. Results indicate that the hierarchical classification performed best when using Random Forest as the key classifier, particularly when compared with decision trees, k-NN, and the Ridge methods.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsaberto-
Direitos: dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Fonte: o PDF do artigo.-
Palavras-chave: dc.subjectImage classification-
Palavras-chave: dc.subjectLearning algorithm-
Palavras-chave: dc.subjectRandom Forest classifier-
Palavras-chave: dc.subjectHierarchical model-
Palavras-chave: dc.subjectPap smear-
Título: dc.titleA hierarchical feature-based methodology to perform cervical cancer classification.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.